Z Orthop Unfall 2018; 156(04): 423-435
DOI: 10.1055/s-0044-101470
Übersicht
Georg Thieme Verlag KG Stuttgart · New York

Stellenwert des Débridements bei der Behandlung fokaler (Grad II – III) Knorpelschäden des Kniegelenks. Systematische Literaturübersicht und Empfehlungen der AG Geweberegeneration (DGOU)

Debridement in Focal Cartilage Damage of the knee. Systematical review of the literature and recommendations of the working group “clinical tissue regeneration” of the German Society of Orthopaedics and Trauma (DGOU)
Kolja Gelse
1   Abteilung für Unfallchirurgie, Universitätsklinikum Erlangen
,
Peter Angele
2   Unfallchirurgie, Universitätsklinikum Regensburg
,
Peter Behrens
3   Orthopädie, CUNO, Hamburg
,
Peter U. Brucker
4   Orthopädie, Orthoplus, München
,
Jakob Fay
5   Unfall- und Arthroskopische Chirurgie, Sporttraumatologie, Lubinus-Clinicum Kiel
,
Daniel Günther
6   Klinik für Unfallchirurgie, Medizinische Hochschule Hannover (MHH)
,
Peter Kreuz
7   Zentrum für Orthopädie und Unfallchirurgie, Asklepios Stadtklinik Bad Tölz
,
Jörg Lützner
8   Klinik und Poliklinik für Orthopädie, Universitätsklinikum Carl Gustav Carus Dresden
,
Henning Madry
9   Zentrum für Experimentelle Orthopädie, Universitätsklinikum des Saarlandes, Homburg
,
Peter E. Müller
10   Orthopädische Klinik, Ludwig-Maximilians-Universität München
,
Philipp Niemeyer
11   Department für Orthopädie und Traumatologie, Universitätsklinikum Freiburg
,
Geert Pagenstert
12   Orthopädie, Universitätsspital Basel, Schweiz
,
Thomas Tischer
13   Orthopädische Klinik und Poliklinik, Universitätsklinikum Rostock
,
Markus Walther
14   Zentrum für Fuß- und Sprunggelenkchirurgie, Schön Klinik München-Harlaching
,
Wolfgang Zinser
15   Orthopädie und Unfallchirurgie, St. Vinzenz-Hospital Dinslaken
,
Gunter Spahn
16   Unfallchirurgie und Orthopädie, Praxisklinik für Unfallchirurgie und Orthopädie Eisenach
17   Klinik für Unfall,- Hand- und Wiederherstellungschirurgie, Universitätsklinikum Jena
› Author Affiliations
Further Information

Publication History

Publication Date:
09 March 2018 (online)

Zusammenfassung

Hintergrund Bei fokalen teilschichtigen Knorpelläsionen (Grad II – III) besteht im klinischen Alltag oft noch Unsicherheit hinsichtlich des zu empfehlenden therapeutischen Vorgehens. Während bei großflächigen, arthrotischen Knorpelveränderungen das Débridement gemäß der gängigen Lehrmeinung weitgehend abzulehnen ist, so steht eine Empfehlung bei fokalen teilschichtigen Knorpelschäden noch aus.

Material und Methoden In dieser Arbeit wurden die wissenschaftlichen Hintergründe der Knorpelglättung und der Gelenkspülung aufgearbeitet und eine systematische Literaturanalyse bez. des klinischen Effekts des Knorpeldébridements bei fokalen Defekten durchgeführt. Zudem erfolgte auch eine aktuelle Beurteilung dieser Thematik durch die Mitglieder der AG Klinische Geweberegeneration der DGOU auf der Basis eines Konsensusprozesses.

Ergebnisse In therapeutischer Hinsicht sind asymptomatische Läsionen mit stabiler Reststruktur und symptomatische Defekte mit instabilen Fragmenten voneinander zu unterscheiden. Grundsätzlich ist der Nutzen einer Gelenk-Lavage und Knorpelglättung fokalen teilschichtigen Knorpelschäden (Grad II – III) nicht belegt. Das mechanische und thermische Resezieren von Knorpelgewebe führt sogar zu einer Nekrosezone der angrenzenden Knorpelschicht und damit zu einer zusätzlichen Gewebeschädigung. Daher sollte eine großflächige „Glättung“ klinisch asymptomatischer, aufgefaserter oder unregelmäßiger Knorpeldefektareale mit ansonsten stabiler Reststruktur nicht durchgeführt werden. Hingegen kann bei klinischen Symptomen das Resezieren von instabilen und delaminierten Knorpelfragmenten sinnvoll sein, um schädliche Scherspannungen im noch vorhandenen Gewebe zu verringern und damit eine Progredienz des Schadens oder die Bildung von freien Gelenkkörpern zu reduzieren.

Schlussfolgerung Die Entscheidungskriterien für ein Débridement von teilschichtigen, fokalen Knorpelläsionen sind multifaktoriell und berücksichtigen die klinische Symptomatik, die Größe und den Grad des Defektes, die Stabilität der Reststruktur, die Defektlokalisation sowie patientenindividuelle Parameter. Während das Débridement bei asymptomatischen fokalen Läsionen weitgehend abzulehnen ist, kann es bei symptomatischen, instabilen Defektsituationen gerechtfertigt sein.

Abstract

Background In clinical practice, there is still no definite treatment algorithm for focal, partial thickness cartilage lesions (grade II – III). It is well-established that debridement (shaving/lavage) of large degenerative cartilage lesions is not recommended, but there is no such recommendation in the case of focal, partial thickness cartilage defects.

Materials and Methods The scientific rationale of cartilage shaving and joint lavage was investigated and a systematic analysis was performed of the literature on the clinical effect of cartilage debridement. Furthermore, a consensus statement on this issue was developed by the working group on Clinical Tissue Regeneration of the German Society of Orthopaedics and Trauma (DGOU).

Results The therapeutic approach is different for asymptomatic lesions with biomechanical stable residual cartilage tissue and clinically symptomatic defects with unstable fragments. The benefit of a joint lavage or surface smoothening of focal partial thickness has not been proved. Even more importantly, the mechanical or thermal resection of cartilage tissue even induces a zone of necrosis in adjacent cartilage, and thus leads to additional injury. Therefore, large scale smoothening (shaving) of clinically asymptomatic, fibrillated or irregular cartilage defects should not be performed. However, if there are clinical symptoms, resection of unstable and delaminated cartilage fragments may be reasonable, as it can reduce harmful shear tension in residual tissue. This can help to brake the progression of the damage and avoid formation of free bodies.

Conclusion The decision criteria for debridement of partial thickness focal cartilage lesions are multifactorial and include the clinical symptoms, the size and the degree of the defect, the stability of remaining cartilage, localisation of the defect, and individual patient-specific parameters. Debridement is not recommended for asymptomatic lesions, but may be reasonable for symptomatic cases with unstable tissue.

 
  • Literatur

  • 1 Figueroa D, Calvo R, Vaisman A. et al. Knee chondral lesions: incidence and correlation between arthroscopic and magnetic resonance findings. Arthroscopy 2007; 23: 312-315
  • 2 Widuchowski W, Lukasik P, Kwiatkowski G. et al. Isolated full thickness chondral injuries. Prevalance and outcome of treatment. A retrospective study of 5233 knee arthroscopies. Acta Chir Orthop Traumatol Cech 2008; 75: 382-386
  • 3 Hjelle K, Solheim E, Strand T. et al. Articular cartilage defects in 1,000 knee arthroscopies. Arthroscopy 2002; 18: 730-734
  • 4 Brittberg M. ICRS Clinical Cartilage Injury Evaluation System. Available at: https://cartilage.org/society/publications/icrs-score/ Accessed 21 February 2018. 3rd ICRS Meeting. Göteborg, Sweden: 2000
  • 5 Niemeyer P, Andereya S, Angele P. et al. [Autologous chondrocyte implantation (ACI) for cartilage defects of the knee: a guideline by the working group “Tissue Regeneration” of the German Society of Orthopaedic Surgery and Traumatology (DGOU)]. Z Orthop Unfall 2013; 151: 38-47
  • 6 Moseley JB, OʼMalley K, Petersen NJ. et al. A controlled trial of arthroscopic surgery for osteoarthritis of the knee. N Engl J Med 2002; 347: 81-88
  • 7 Kirkley A, Birmingham TB, Litchfield RB. et al. A randomized trial of arthroscopic surgery for osteoarthritis of the knee. N Engl J Med 2008; 359: 1097-1107
  • 8 Reichenbach S, Rutjes AW, Nüesch E. et al. Joint lavage for osteoarthritis of the knee. Cochrane Database Syst Rev 2010; (05) CD007320
  • 9 Johnson LL. Arthroscopic abrasion arthroplasty historical and pathologic perspective: present status. Arthroscopy 1986; 2: 54-69
  • 10 Goebel L, Madry H. History of Arthroscopy. In: Randelli P, Dejour D, van Dijk C, Denti M, Seil R. eds. Arthroscopy: Basic to Advanced. Berlin, Heidelberg: Springer; 2016: 3-12
  • 11 Aroen A, Loken S, Heir S. et al. Articular cartilage lesions in 993 consecutive knee arthroscopies. Am J Sports Med 2004; 32: 211-215
  • 12 Thal R, Danziger MB, Kelly A. Delayed articular cartilage slough: two cases resulting from holmium : YAG laser damage to normal articular cartilage and a review of the literature. Arthroscopy 1996; 12: 92-94
  • 13 Rocco P, Lorenzo DB, Guglielmo T. et al. Radiofrequency energy in the arthroscopic treatment of knee chondral lesions: a systematic review. Br Med Bull 2016; 117: 149-156
  • 14 Spahn G, Frober R, Linss W. Treatment of chondral defects by hydro jet. Results of a preliminary scanning electron microscopic evaluation. Arch Orthop Trauma Surg 2006; 126: 223-227
  • 15 Owens BD, Stickles BJ, Balikian P. et al. Prospective analysis of radiofrequency versus mechanical debridement of isolated patellar chondral lesions. Arthroscopy 2002; 18: 151-155
  • 16 Spahn G, Klinger HM, Mückley T. et al. Four-year results from a randomized controlled study of knee chondroplasty with concomitant medial meniscectomy: mechanical debridement versus radiofrequency chondroplasty. Arthroscopy 2010; 26 (Suppl. 09) S73-S80
  • 17 Mayr H. AGA-Instruktorenumfrage Thema Knorpel 2009. Im Internet: http://www.aga-online.ch/userfiles/File/Knorpelumfrage 2009 05 10 2010.pdf Stand: 31.10.2017
  • 18 Vogt S, Angele P, Arnold M. et al. Practice in rehabilitation after cartilage therapy: an expert survey. Arch Orthop Trauma Surg 2013; 133: 311-320
  • 19 Niemeyer P, Feucht MJ, Fritz J. et al. Cartilage repair surgery for full-thickness defects of the knee in Germany: indications and epidemiological data from the German Cartilage Registry (KnorpelRegister DGOU). Arch Orthop Trauma Surg 2016; 136: 891-897
  • 20 Cameron-Donaldson M, Holland C, Hungerford DS. et al. Cartilage debris increases the expression of chondrodestructive tumor necrosis factor-alpha by articular chondrocytes. Arthroscopy 2004; 20: 1040-1043
  • 21 Silverstein AM, Stefani RM, Sobczak E. et al. Toward understanding the role of cartilage particulates in synovial inflammation. Osteoarthritis Cartilage 2017; 25: 1353-1361
  • 22 Evans CH, Mazzocchi RA, Nelson DD. et al. Experimental arthritis induced by intraarticular injection of allogenic cartilaginous particles into rabbit knees. Arthritis Rheum 1984; 27: 200-207
  • 23 Hurtig MB. Use of autogenous cartilage particles to create a model of naturally occurring degenerative joint disease in the horse. Equine Vet J Suppl 1988; (06) 19-22
  • 24 Homandberg GA. Cartilage damage by matrix degradation products: fibronectin fragments. Clin Orthop Relat Res 2001; (Suppl. 391) S100-S107
  • 25 Sarkissian M, Lafyatis R. Integrin engagement regulates proliferation and collagenase expression of rheumatoid synovial fibroblasts. J Immunol 1999; 162: 1772-1779
  • 26 Fu X, Lin L, Zhang J. et al. Assessment of the efficacy of joint lavage in rabbits with osteoarthritis of the knee. J Orthop Res 2009; 27: 91-96
  • 27 Scanzello CR. Role of low-grade inflammation in osteoarthritis. Curr Opin Rheumatol 2017; 29: 79-85
  • 28 Hunziker EB, Rosenberg LC. Repair of partial-thickness defects in articular cartilage: cell recruitment from the synovial membrane. J Bone Joint Surg Am 1996; 78: 721-733
  • 29 Khan IM, Gonzalez LG, Francis L. et al. Interleukin-1beta enhances cartilage-to-cartilage integration. Eur Cell Mater 2011; 22: 190-201
  • 30 Shaerf D, Banerjee A. Assessment and management of posttraumatic haemarthrosis of the knee. Br J Hosp Med (Lond) 2008; 69: 459-460 462–463
  • 31 Wang Y, Ding C, Wluka AE. et al. Factors affecting progression of knee cartilage defects in normal subjects over 2 years. Rheumatology (Oxford) 2006; 45: 79-84
  • 32 Spahn G, Hofmann GO. [Focal cartilage defects within the medial knee compartment. predictors for osteoarthritis progression]. Z Orthop Unfall 2014; 152: 480-488
  • 33 Carnes J, Stannus O, Cicuttini F. et al. Knee cartilage defects in a sample of older adults: natural history, clinical significance and factors influencing change over 2.9 years. Osteoarthritis Cartilage 2012; 20: 1541-1547
  • 34 Davies-Tuck ML, Wluka AE, Wang Y. et al. The natural history of cartilage defects in people with knee osteoarthritis. Osteoarthritis Cartilage 2008; 16: 337-342
  • 35 Cicuttini F, Ding C, Wluka A. et al. Association of cartilage defects with loss of knee cartilage in healthy, middle-age adults: a prospective study. Arthritis Rheum 2005; 52: 2033-2039
  • 36 Biswal S, Hastie T, Andriacchi TP. et al. Risk factors for progressive cartilage loss in the knee: a longitudinal magnetic resonance imaging study in forty-three patients. Arthritis Rheum 2002; 46: 2884-2892
  • 37 Edwards 3rd RB, Lu Y, Uthamanthil RK. et al. Comparison of mechanical debridement and radiofrequency energy for chondroplasty in an in vivo equine model of partial thickness cartilage injury. Osteoarthritis Cartilage 2007; 15: 169-178
  • 38 Uthamanthil RK, Edwards RB, Lu Y. et al. In vivo study on the short-term effect of radiofrequency energy on chondromalacic patellar cartilage and its correlation with calcified cartilage pathology in an equine model. J Orthop Res 2006; 24: 716-724
  • 39 Lu Y, Edwards 3rd RB, Cole BJ. et al. Thermal chondroplasty with radiofrequency energy. An in vitro comparison of bipolar and monopolar radiofrequency devices. Am J Sports Med 2001; 29: 42-49
  • 40 Amiel D, Ball ST, Tasto JP. Chondrocyte viability and metabolic activity after treatment of bovine articular cartilage with bipolar radiofrequency: an in vitro study. Arthroscopy 2004; 20: 503-510
  • 41 Yasura K, Nakagawa Y, Kobayashi M. et al. Mechanical and biochemical effect of monopolar radiofrequency energy on human articular cartilage: an in vitro study. Am J Sports Med 2006; 34: 1322-1327
  • 42 Horstman CL, McLaughlin RM. The use of radiofrequency energy during arthroscopic surgery and its effects on intraarticular tissues. Vet Comp Orthop Traumatol 2006; 19: 65-71
  • 43 Houston DA, Amin AK, White TO. et al. Chondrocyte death after drilling and articular screw insertion in a bovine model. Osteoarthritis Cartilage 2013; 21: 721-729
  • 44 Huntley JS, Bush PG, McBirnie JM. et al. Chondrocyte death associated with human femoral osteochondral harvest as performed for mosaicplasty. J Bone Joint Surg Am 2005; 87: 351-360
  • 45 Zingler C, Carl HD, Swoboda B. et al. Limited evidence of chondrocyte outgrowth from adult human articular cartilage. Osteoarthritis Cartilage 2016; 24: 124-128
  • 46 Orth P, Duffner J, Zurakowski D. et al. Small-diameter awls improve articular cartilage repair after microfracture treatment in a translational animal model. Am J Sports Med 2016; 44: 209-219
  • 47 Gao L, Orth P, Muller-Brandt K. et al. Early loss of subchondral bone following microfracture is counteracted by bone marrow aspirate in a translational model of osteochondral repair. Sci Rep 2017; 7: 45189
  • 48 Mohr W. Gelenkpathologie. Historische Grundlagen, Ursachen und Entwicklungen von Gelenkleiden und ihre Pathomorphologie. Berlin, Heidelberg, New York: Springer; 2000
  • 49 Jahn S, Seror J, Klein J. Lubrication of articular cartilage. Annu Rev Biomed Eng 2016; 18: 235-258
  • 50 Forster H, Fisher J. The influence of loading time and lubricant on the friction of articular cartilage. Proc Inst Mech Eng H 1996; 210: 109-119
  • 51 Teeple E, Fleming BC, Mechrefe AP. et al. Frictional properties of Hartley guinea pig knees with and without proteolytic disruption of the articular surfaces. Osteoarthritis Cartilage 2007; 15: 309-315
  • 52 Mabuchi K, Obara T, Ikegami K. et al. Molecular weight independence of the effect of additive hyaluronic acid on the lubricating characteristics in synovial joints with experimental deterioration. Clin Biomech (Bristol, Avon) 1999; 14: 352-356
  • 53 Brinckmann PF, Frobin W, Leivseth G. Orthopädische Biomechanik. Stuttgart, New York: Thieme; 2000
  • 54 Venalainen MS, Mononen ME, Salo J. et al. Quantitative evaluation of the mechanical risks caused by focal cartilage defects in the knee. Sci Rep 2016; 6: 37538
  • 55 Cook JL, Marberry KM, Kuroki K. et al. Assessment of cellular, biochemical, and histologic effects of bipolar radiofrequency treatment of canine articular cartilage. Am J Vet Res 2004; 65: 604-609
  • 56 Hunziker EB, Quinn TM. Surgical removal of articular cartilage leads to loss of chondrocytes from cartilage bordering the wound edge. J Bone Joint Surg Am 2003; 85-A (Suppl. 02) S85-S92
  • 57 Eltawil NM, Howie SE, Simpson AH. et al. The use of hyperosmotic saline for chondroprotection: implications for orthopaedic surgery and cartilage repair. Osteoarthritis Cartilage 2015; 23: 469-477
  • 58 Shen P, Li X, Xie G. et al. Time-dependent effects of arthroscopic conditions on human articular cartilage: an in vivo study. Arthroscopy 2016; 32: 2582-2591
  • 59 Teeple E, Karamchedu NP, Larson KM. et al. Arthroscopic irrigation of the bovine stifle joint increases cartilage surface friction and decreases superficial zone lubricin. J Biomech 2016; 49: 3106-3110
  • 60 Huang Y, Zhang Y, Ding X. et al. Osmolarity influences chondrocyte repair after injury in human articular cartilage. J Orthop Surg Res 2015; 10: 19
  • 61 Thein R, Haviv B, Kidron A. et al. Intra-articular injection of hyaluronic acid following arthroscopic partial meniscectomy of the knee. Orthopedics 2010; 33: 724
  • 62 Trueba Vasavilbaso C, Rosas Bello CD, Medina López E. et al. Benefits of different postoperative treatments in patients undergoing knee arthroscopic debridement. Open Access Rheumatol 2017; 9: 171-179
  • 63 Bisson LJ, Kluczynski MA, Wind WM. et al. Patient outcomes after observation versus debridement of unstable chondral lesions during partial meniscectomy: The Chondral Lesions And Meniscus Procedures (ChAMP) Randomized Controlled Trial. J Bone Joint Surg Am 2017; 99: 1078-1085
  • 64 Aae TF, Randsborg PH, Breen AB. et al. Norwegican Cartilage Project – a study protocol for a double-blinded randomized controlled trial comparing arthroscopic microfracture with arthroscopic debridement in focal cartilage defects in the knee. BMC Musculoskelet Disord 2016; 17: 292
  • 65 Randsborg PH, Brinchmann J, Loken S. et al. Focal cartilage defects in the knee – a randomized controlled trial comparing autologous chondrocyte implantation with arthroscopic debridement. BMC Musculoskelet Disord 2016; 17: 117
  • 66 Anderson DE, Rose MB, Wille AJ. et al. Arthroscopic Mechanical Chondroplasty of the Knee Is Beneficial for Treatment of Focal Cartilage Lesions in the Absence of Concurrent Pathology. Orthop J Sports Med 2017; 5: 2325967117707213
  • 67 Angermann P, Harager K, Tobin LL. Arthroscopic chondrectomy as a treatment of cartilage lesions. Knee Surg Sports Traumatol Arthrosc 2002; 10: 6-9
  • 68 Barber FA, Iwasko NG. Treatment of grade III femoral chondral lesions: mechanical chondroplasty versus monopolar radiofrequency probe. Arthroscopy 2006; 22: 1312-1317
  • 69 Engen CN, Loken S, Aroen A. et al. No degeneration found in focal cartilage defects evaluated with dGEMRIC at 12-year follow-up. Acta Orthop 2017; 88: 82-89
  • 70 Fu FH, Zurakowski D, Browne JE. et al. Autologous chondrocyte implantation versus debridement for treatment of full-thickness chondral defects of the knee: an observational cohort study with 3-year follow-up. Am J Sports Med 2005; 33: 1658-1666
  • 71 Gudas R, Gudaite A, Mickevicius T. et al. Comparison of osteochondral autologous transplantation, microfracture, or debridement techniques in articular cartilage lesions associated with anterior cruciate ligament injury: a prospective study with a 3-year follow-up. Arthroscopy 2013; 29: 89-97
  • 72 Kruger T, Wohlrab D, Birke A. et al. Results of arthroscopic joint debridement in different stages of chondromalacia of the knee joint. Arch Orthop Trauma Surg 2000; 120: 338-342
  • 73 Loken S, Heir S, Holme I. et al. 6-year follow-up of 84 patients with cartilage defects in the knee. Knee scores improved but recovery was incomplete. Acta Orthop 2010; 81: 611-618
  • 74 Spahn G, Klinger HM, Harth P. et al. [Cartilage regeneration after high tibial osteotomy. Results of an arthroscopic study]. Z Orthop Unfall 2012; 150: 272-279
  • 75 Fulkerson JP, Shea KP. Disorders of patellofemoral alignment. J Bone Joint Surg Am 1990; 72: 1424-1429