Physikalische Medizin, Rehabilitationsmedizin, Kurortmedizin 2018; 28(03): 190-194
DOI: 10.1055/s-0044-101549
Originalarbeit
© Georg Thieme Verlag KG Stuttgart · New York

Leistungsorientierte, zeitlich unabhängige Rehabilitationsprogression, ein Vier-Phasenmodel

Performance-Oriented, Time Independent Progression of Musculoskeletal Rehabilitation, A Four-Phase Model
Helge Riepenhof
1   BG Klinikum Hamburg, Zentrum für Rehabilitationsmedizin, Hamburg
,
Jean Jacques Glaesener
2   ifi – Institut für Interdisziplinäre Medizin, Rehabilitationsmedizin, Hamburg
› Author Affiliations
Further Information

Publication History

received 18 September 2017

accepted 18 January 2018

Publication Date:
25 June 2018 (online)

Zusammenfassung

Nachbehandlungsschemata und Rehabilitationsprotokolle nach muskuloskelettalen Verletzungen unterliegen in der Literatur fast ausschließlich einem rein zeitorientierten Schema. Der Heilungsprozess ist allerdings von diversen Faktoren abhängig. Insbesondere konstitutionelle Eigenschaften, Vorerkrankungen, eine große Varianz der Trainierbarkeit und die Ausprägung der unfallabhängigen oder unfallunabhängigen Dekonditionierung von Patienten sind entscheidend. Das Paradigma der zeitlichen Steuerung der Rehabilitation ist daher eher nachteilig und eine zeitlich unabhängige, leistungsorientierte Rehabilitationsprogression erscheint sinnvoller. Die Autoren beschreiben ein 4-Phasenmodell postoperativer Behandlungen. Beginnend unmittelbar nach der Operation und endend mit dem Abschluss des Heilverfahrens soll so dargestellt werden, welche Leistungsfähigkeiten zu welchem Zeitpunkt erreicht sein müssen, um frei von Überlastungsschäden, Folgeverletzungen oder Rückfällen den Verlauf einer Rehabilitationsbehandlung zu gestalten.

Abstract

Post-treatment regimens and rehabilitation protocols after musculoskeletal injuries are almost exclusively based on a purely time-oriented schema. The healing process, however, depends on various factors. In particular, constitutional characteristics, pre-existing diseases, a large variance of workability and the occurrence of accident-dependent or accident-independent deconditioning of patients are crucial. The paradigm of the temporal control of rehabilitation is therefore rather disadvantageous and a time-independent, performance-oriented rehabilitation progression appears more sensible. The authors describe a four-phase model of postoperative treatments. Starting immediately after the operation and ending with the completion of the healing procedure, the aim is to show what abilities have to be reached at which point in time in order to make the course of a rehabilitation treatment free of overload damage, consequential injuries or relapses.

 
  • Literatur

  • 1 Weller S. Steuerung des Heilverfahrens, Weller-Datenbank, Forschungsgesellschaft für angewandte Systemsicherheit und Arbeitsmedizin, Landesverband Südwest der Deutschen Gesetzlichen Unfallversicherung.
  • 2 Froese E. Standards für Heilverfahren und Rehabilitation: 4. neu überarbeitete Auflage. Gentner Verlag; Feb 2015
  • 3 Faghih M, Hosseini SM, Smith B. et al. Knockout of Angiotensin AT2 receptors accelerates healing but impairs quality. Aging (Albany NY) 2015; 7: 1185-1197
  • 4 Armstrong N, Barker AR, McManus AM. Muscle metabolism changes with age and maturation: How do they relate to youth sport performance?. Br J Sports Med 2015; 49: 860-864
  • 5 Tomlinson RE, Silva MJ. Skeletal Blood Flow in Bone Repair and Maintenance. Bone Res 2013; 1: 311-322
  • 6 Vannucci L, Brandi ML. Healing of the bone with anti-fracture drugs. Expert Opin Pharmacother 2016; 17: 2267-2272
  • 7 Steding-Ehrenborg K, Hedén B. A longitudinal study on cardiac effects of deconditioning and physical reconditioning using the anterior cruciate ligament injury as a model. Clin Physiol Funct Imaging 2013; 33: 423-430
  • 8 Hackney KJ. Nutrition and resistance exercise during reconditioning from unloading. Aviat Space Environ Med 2011; 82: 805-809
  • 9 Valle X. et al. Hamstring Muscle Injuries, a Rehabilitation Protocol Purpose. Asian J Sports Med 2015; 6: e25411
  • 10 Berger RA, Jacobs JJ, Meneghini RM. et al. Rapid Rehabilitation and Recovery with Minimally Invasive Total Hip Arthroplasty. Clinical Orthopaedics & Related Research 2004; 429: 239-247
  • 11 Froböse I. Training in der Therapie: Grundlagen und Praxis. Urban und Fischer 13: 6 2003;
  • 12 Hudson Z. Rehabilitation and return to play after foot and ankle injuries in athletes. Sports Med Arthrosc Rev 2009; 17: 203-207
  • 13 Gibala MJ, Gillen JB, Percival ME. et al. Physiological and health-related adaptations to low-volume interval training: influences of nutrition and sex. Sports Med 2014; 44 (Suppl. 02) S127-S137
  • 14 Connolly B, Salisbury L, O'Neill B. et al. Exercise rehabilitation following intensive care unit discharge for recovery from critical illness. Cochrane Database Syst Rev 2015; 22: CD008632
  • 15 McGrane N. Addition of motivational interventions to exercise and traditional physiotherapy: a review and meta-analysis. Physiotherapy 2015; 101: 1-12
  • 16 Buchholz I, Kohlmann T. Ziele von Patienten der medizinischen Rehabilitation – Eine Übersicht zum Forschungsstand in Deutschland. Rehabilitation 2013; 52: 75-85
  • 17 Mall NA, Tanaka MJ, Choi LS. et al. Factors affecting rotator cuff healing. J Bone Joint Surg Am 2014; 96: 778-788
  • 18 Augat P, Faschingbauer M, Seide K. et al. Biomechanical methods for the assessment of fracture repair. Injury 2014; 45 (Suppl. 02) S32-S38
  • 19 Heinonen I, Koga S, Kalliokoski KK. et al. Heterogeneity of Muscle Blood Flow and Metabolism: Influence of Exercise, Aging, and Disease States. Exerc Sport Sci Rev 2015; 43: 117-124
  • 20 Koga S, Rossiter HB, Heinonen I. et al. Dynamic heterogeneity of exercising muscle blood flow and O2 utilization. Med Sci Sports Exerc 2014; 46: 860-876
  • 21 Malhotra A, Pelletier MH, Yu Y. et al. Can platelet-rich plasma (PRP) improve bone healing? A comparison between the theory and experimental outcomes. Arch Orthop Trauma Surg 2013; 133: 153-165
  • 22 Chachan S. Ultrasound monitoring of fracture healing: is this the end of radiography in fracture follow-ups?. J Orthop Trauma 2015; 29: e133-e138
  • 23 Collin P, Yoshida M, Delarue A. et al. Evaluating postoperative rotator cuff healing: Prospective comparison of MRI and ultrasound. Orthop Traumatol Surg Res 2015; 101 6 Suppl S265-S268
  • 24 Vescovo R. Management of muscular injuries: Strategies for diagnosis and treatment. Trauma und Berufskrankheit 19: (Suppl 1): 2017
  • 25 Gomez-Barrena E, Rosset P, Lozano D. et al. Bone fracture healing: cell therapy in delayed unions and nonunions. Bone 2015; 70: 93-101
  • 26 Lobenhoffer P. Derzeitige Behandlungskonzepte bei der Erstluxation des Schultergelenks. Zentralbl Chir 2001; 126: 192-198
  • 27 Perren SM. Fracture healing: fracture healing understood as the result of a fascinating cascade of physical and biological interactions. Part I. An Attempt to Integrate Observations from 30 Years AO Research. Acta Chir Orthop Traumatol Cech. 2014; 81: 355-364
  • 28 Sherman SL, Plackis AC, Nuelle CW. et al. Patellofemoral anatomy and biomechanics. Clin Sports Med 2014; 33: 389-401
  • 29 Riepenhof. Kreuzbandruptur: Von der Reha in den Wettkampf. Trauma und Berufskrankheit. 2016
  • 30 Vitale C, Agosti V, Avella D. et al. Effect of Global Postural Rehabilitation program on spatiotemporal gait parameters of parkinsonian patients: a three-dimensional motion analysis study. Neurol Sci 2012; 33: 1337-1343
  • 31 Mizner RL, Chmielewski TL, Toepke JJ. et al. Comparison of 2-dimensional measurement techniques for predicting knee angle and moment during a drop vertical jump. Clin J Sport Med 2012; 22: 221-227
  • 32 deCCesar M. The effect of local muscle endurance training on cardiorespiratory capacity in young women. J Strength Cond Res 2009; 23: 1637-1643
  • 33 Fullem BW. Overuse lower extremity injuries in sports. Clin Podiatr Med Surg 2015; 32: 239-251
  • 34 Sharma P, Maffulli N. Biology of tendon injury: healing, modeling and remodeling. J Musculoskelet Neuronal Interact 2006; 6: 181-190
  • 35 Opar DA, Williams MD, Shield AJ. Hamstring strain injuries: factors that lead to injury and re-injury. Sports Med 2012; 42: 209-226
  • 36 Mohtadi M. Reruptures, Reinjuries, and Revisions at a Minimum 2-Year Follow-up: A Randomized Clinical Trial Comparing 3 Graft Types for ACL Reconstruction. Clin J Sport Med 2016; 26: 96-107
  • 37 Silfies SP, Ebaugh D, Pontillo M. et al. Critical review of the impact of core stability on upper extremity athletic injury and performance. Braz J Phys Ther 2015; 19: 360-368
  • 38 Bloch H. Return-to-Competition – Sicher zurück in den Sport. Trauma und Berufskrankheit 2017
  • 39 Johnston RD, Gabbett TJ, Jenkins DG. Applied sport science of rugby league. Sports Med 2014; 44: 1087-1100
  • 40 Riepenhof H. Kreuzbandruptur: Von der Reha in den Wettkampf. TraumaBerufskrankh 2016; 18 (Suppl. 05) 511-514
  • 41 Gerbershagen HU. 2013; Chronifizierung postoperativer Schmerzen. Schmerz 27: 81-95
  • 42 Simmel S, Glaesener JJ. Schmerzrehabilitation. In: TraumaBerufskranh. Berlin: Springer Verlag;