Endoscopy 2000; 32(6): 464-468
DOI: 10.1055/s-2000-643
Original Article

Georg Thieme Verlag Stuttgart · New York

3-D Vision Improves Performance in a Pelvic Trainer

H. T. Tevaearai, X. M. Mueller, L. K. von Segesser
  • Dept. of Cardiovascular Surgery, University Hospital, Lausanne, Switzerland
Further Information

Publication History

Publication Date:
31 December 2000 (online)

Background and Study Aims: Experienced endoscopic surgeons have adapted to the absence of depth perception while using two-dimensional (2-D) visualization. However, three-dimensional (3-D) vision may prove useful at least at the beginning of the learning curve in celioscopic training.

Methods: In a pelvitrainer with a fixed camera, two skill tests were designed to assess the performance of three groups of operators: “non-surgeons”, “non-celioscopist surgeons”, and “trained celioscopists”. In the first test, the candidate had to touch with a needle a sequence of dots distributed on a 7.1-cm2 area. In the second test, a 6-0 C-1 needle had to be passed consecutively through two 1-mm holes made in a thin vertical plastic wall. Each test was performed ten times, using either 2-D vision (five times) or 3-D vision (five times) interspersed in a random manner.

Results: In both tests and within each group, performance was related to the experience of the operator, with the trained celioscopists' group obtaining the best results and the non-surgeons the worst. In every situation, including the trained celioscopists' group, 3-D vision significantly improved performances. No significant difference was observed between the results of the non-celioscopist surgeons' group using 3-D vision and those of the trained celioscopists' group using 2-D vision.

Conclusions: 3-D vision improves the performance and accuracy of endoscopic surgeons. It provides a visual perception “close to reality”, and helps celioscopic beginners to accelerate their training.

References

  • 1 Blomqvist A M, Lonroth H, Dalenback J, Lundel L. Laparoscopic or open fundoplication? A complete cost analysis.  Surg Endosc. 1998;  12 1209-1212
  • 2 Hawasli A, Featherstone R, Lloyd L, Vorhees M. Laparoscopic training in residency program.  J Laparoendosc Surg. 1996;  6 171-174
  • 3 Gundry S R, Shattuck O H, Razzouk A J, et al. Facile minimally invasive cardiac surgery via ministernotomy.  Ann Thorac Surg. 1998;  65 1100-1104
  • 4 Moore M J, Benett C L. The learning curve for laparoscopic cholecystectomy. The Southern Surgeons Club.  Am J Surg. 1995;  170 55-59
  • 5 Gallagher A G, McClure N, McGuigan J, et al. Virtual reality training in laparoscopic surgery: a preliminary assessment of minimally invasive surgical trainer virtual reality (MIST VR).  Endoscopy. 1999;  31 310-313
  • 6 Satava R M. 3-D vision technology applied to advanced minimally invasive surgery systems.  Surg Endosc. 1993;  7 429-431
  • 7 Durrani A F, Preminger G M. Three-dimensional video imaging for endoscopic surgery.  Comput Biol Med. 1995;  25 237-247
  • 8 Crosthwaite G, Chung T, Dunkley P, et al. Comparison of direct vision and electronic two- and three-dimensional display systems on surgical task efficiency in endoscopic surgery.  Br J Surg. 1995;  82 849-851
  • 9 Chan A C, Chung S C, Yim A P, et al. Comparison of two-dimensional camera systems in laparoscopic surgery.  Surg Endosc. 1997;  11 438-440
  • 10 Babayan R K, Chiu A W, Este-McDonald J, Birkett D H. The comparison between 2-dimensional (2D) and 3-dimensional (3D) laparoscopic video system in a pelvic trainer.  J Endourology. 1993;  7 S195
  • 11 Pietrabissa A, Scarcello E, Carobbi A, Mosca F. Three-dimensional versus two-dimensional video system for the trained endoscopic surgeon and the beginner.  Endosc Surg Allied Technol. 1994;  2 315-317
  • 12 Derossis A M, Fried G M, Abrahamovicz M, et al. Development of a model for training and evaluation of laparoscopic skills.  Am J Surg. 1998;  175 482-487
  • 13 Derossis A M, Bothwell J, Sigman H H, Fried G M. The effect of practice on performance in a laparoscopic simulator.  Surg Endosc. 1998;  12 1117-1120
  • 14 Benetti F, Mariani M A, Sani G, et al. Video-assisted minimally invasive coronary operations without cardiopulmonary bypass: a multicenter study.  J Thorac Cardiovasc Surg. 1996;  112 1478-1484
  • 15 Tevaearai H T, Mueller X M, Stumpe F, et al. Advantages of a modified gastroscope for video-assisted internal mammary harvesting.  Ann Thorac Surg. 1999;  67 872-873
  • 16 Nataf P, Lima L, Benarim S, et al. Video-assisted coronary bypass surgery: clinical results.  Eur J Cardiothorac Surg. 1997;  11 865-869
  • 17 Stephenson E R, Sankholkar S, Ducko C T, Damiano R J. Robotically assisted microsurgery for endoscopic coronary artery bypass grafting.  Ann Thorac Surg. 1998;  66 1064-1067
  • 18 Garcia-Ruiz A, Smedira N G, Loop F D, et al. Robotic surgical instruments for dexterity enhancement in thoracoscopic coronary artery bypass graft.  J Laparoendosc Adv Surg Tech A. 1997;  7 277-283
  • 19 Ota D, Loftin B, Saito T, et al. Virtual reality in surgical education.  Comput Biol Med. 1995;  25 127-137

H. T. Tevaearai, M.D.

Dept. of Cardiovascular Surgery University Hospital CHUV

1011 Lausanne Switzerland

Fax: Fax:+ 41-21-314-2278

Email: E-mail:hendrik.tevaearai@hospvd.ch

    >