Zusammenfassung.
Ziel der Studie: Das mögliche epileptogene Potential von Etomidat und ein Zusammenhang der häufig
auftretenden Myoklonien unter Etomidat mit Krampfmustern im EEG ist umstritten. Die
klinische Wirkung eines Anästhetikums ist das Abbild seiner molekularen Wirkungen.
Einer epileptogenen Wirkung von Etomidat müsste somit ein bislang unbekanntes molekulares
Korrelat gegenüberstehen. Die Unterdrückung von humanen Kv 1.1- Kaliumkanälen führt
beim Menschen zu Epilepsie. Eine Unterdrückung dieser Kanäle durch Etomidat bei klinisch
relevanten Konzentrationen würde somit eine epileptogene Wirkung dieses Hypnotikums
belegen und wurde deshalb untersucht. Methodik: Patch-Clamp Untersuchungen der Wirkung von Etomidat auf klonierte und funktionell
exprimierte menschliche Kv 1.1- Kaliumkanäle. Ergebnisse: Etomidat unterdrückt konzentrationsabhängig und reversibel Kv 1.1- Kaliumkanäle des
Menschen. Der IC50-Wert beträgt 400 µM, der Hill-Koeffizient ist 2. Das Verhältnis von freien klinischen
Plasmakonzentrationen und dem IC50-Wert ist 0,006. Bei Plasmakonzentrationen, wie sie während der klinischen Anwendung
von Etomidat auftreten, wären Kv 1.1- Kaliumkanäle zu weniger als 0.01 % unterdrückt.
Schlussfolgerung: Das geringe Ausmaß der Unterdrückung durch Etomidat bei diesen Konzentrationen erlaubt
Zweifel an einer über Kv 1.1- Kaliumkanäle vermittelten epileptogenen Wirkung von
Etomidat.
Etomidate-induced Seizures? Investigation on Human Kv1.1 Potassium Channels.
Objective: It is a matter of dispute whether etomidate exhibits an epileptogenic action. It
is also disputed whether frequently observed myocloni induced by etomidate are related
to seizure-like activity in the EEG. The clinical effects of anaesthetic agents reflect
their molecular action. A possible epileptogenic action of etomidate should, therefore,
result from action on a molecular target that has yet to be identified. Suppression
of Kv 1.1 channels may be associated with epilepsy in men. Inhibition of Kv 1.1 channels
by etomidate at clinically relevant concentrations would, thus, argue in favour of
an epileptogenic action of etomidate. Methods: Patch-clamp recordings of the pharmacological action of etomidate on cloned and functionally
expressed human Kv 1.1 channels. Results: Etomidate inhibits human Kv 1.1 channels in a concentration-dependent and reversible
manner. The IC50-value is 400 µM, the Hill-coefficient is 2. The ratio of free clinical plasma concentrations
and the IC50-value is 0.006. At plasma concentrations determined in a clinical setting Kv 1.1
channels would be suppressed by less than 0.01 %. Conclusion: The small effect of etomidate on human Kv 1.1 channels at these concentrations questions
an epileptogenic action of etomidate caused by inhibition of Kv 1.1 channels.
Schlüsselwörter:
Etomidat - Kv 1.1- Kaliumkanäle - Epilepsie - Myoklonus
Key words:
Etomidate - Kv 1.1 potassium channels - Epilepsy - Myoclonus
Literatur
- 1
Doenicke A, Kugler J, Penzel G, Laub M, Kalmar L, Killian I, Bezecny H.
Cerebral function under etomidate, a new non-barbiturate i.v. hypnotic.
Anaesthesist.
1973;
22
357-366
- 2
Fragen R J, Caldwell N, Brunner E A.
Clinical use of etomidate for anesthesia induction: a preliminary report.
Anesth Analg.
1976;
55
730-733
- 3
Gancher S, Laxer K D, Krieger W.
Activation of epileptogenic activity by etomidate.
Anesthesiology.
1984;
61
616-618
- 4
Ebrahim Z Y, DeBoer G E, Luders H, Hahn J F, Lesser R P.
Effect of etomidate on the electroencephalogram of patients with epilepsy.
Anesth Analg.
1986;
65
1004-1006
- 5
Reddy R V, Moorthy S S, Dierdorf S F, Deitch R D, Link L.
Excitatory effects and electroencephalographic correlation of etomidate, thiopental,
methohexital, and propofol.
Anesth Analg.
1993;
77
1008-1011
- 6
Doenicke A W, Roizen M F, Kugler J, Kroll H, Foss J, Ostwald P.
Reducing myoclonus after etomidate.
Anesthesiology.
1999;
90
113-119
- 7
Urban B W, Friederich P.
Anesthetic mechanisms in-vitro and in general anaesthesia.
Toxicol lett.
1998;
101
9-16
- 8
Friederich P, Urban B W.
Interaction of intravenous anesthetics with human neuronal potassium currents in relation
to clinical concentrations.
Anesthesiology.
1999;
91
1853-1860
- 9 Hille B. Ionic channels of excitable membranes. 2. Aufl., Sunderland, Massachusetts,
Sinauer Associates 1992
- 10 Ashcroft F M. Ion channels and disease. London, Academic Press 2000
- 11
Harris T, Shahidullah M, Ellingson J S, Covarrubias M.
General anesthetic action at an internal protein site involving the S 4 - S 5 cytoplasmic
loop of a neuronal K(+) channel.
J Biol Chem.
2000;
275
4928-4936
- 12
Zuberi S M, Eunson L H, Spauschus A, De Silva R, Tolmie J, Wood N W, McWilliam R C,
Stephenson J P, Kullmann D M, Hanna M G.
A novel mutation in the human voltage-gated potassium channel gene (Kv 1.1) associates
with episodic ataxia type 1 and sometimes with partial epilepsy.
Brain.
1999;
122
817-825
- 13
Spauschus A, Eunson L, Hanna M G, Kullmann D M.
Functional characterization of a novel mutation in KCNA 1 in episodic ataxia type
1 associated with epilepsy.
Ann N Y Acad Sci.
1999;
868
442-446
- 14
Hamill O P, Marty A, Neher E, Sakmann B, Sigworth F J.
Improved patch-clamp techniques for high-resolution current recording from cells and
cell-free membrane patches.
Pflügers Arch.
1981;
391
85-100
- 15
Van Hamme M J, Ghoneim M M, Ambre J J.
Pharmacokinetics of etomidate, a new intravenous anesthetic.
Anesthesiology.
1978;
49
274-277
- 16
Coetzee W A, Amarillo Y, Chiu J, Chow A, Lau D, McCormack T, Moreno H, Nadal M S,
Ozaita A, Pountney D, Saganich M, Vega-Saenz de Miera E, Rudy B.
Molecular diversity of K+ channels.
Ann N Y Acad Sci.
1999;
868
233-285
- 17
Biervert C, Schroeder B C, Kubisch C, Berkovic S F, Propping P, Jentsch T J, Steinlein O K.
A potassium channel mutation in neonatal human epilepsy.
Science.
1998;
279
403-406
- 18
Smart S L, Lopantsev V, Zhang C L, Robbins C A, Wang H, Chiu S Y, Schwartzkroin P A,
Messing A, Tempel B L.
Deletion of the K(V)1.1 potassium channel causes epilepsy in mice.
Neuron.
1998;
20
809-819
- 19
Friederich P, Urban B W.
Etomidat unterdrückt einen menschlichen neuronalen Kaliumstrom.
Anaesthesist.
1997;
46
434-436
- 20
Friederich P, Dilger J P, Pongs O, Urban B W.
Kv3.1 expression in human neuroblastoma SH-SY5Y cells.
Pflügers Arch.
2000;
439
R 427
- 21
Ho C S, Grange R W, Joho R H.
Pleiotropic effects of a disrupted K+ channel gene: reduced body weight, impaired
motor skill and muscle contraction, but no seizures.
Proc Natl Acad Sci USA.
1997;
94
1533-1538
- 22
Browne D L, Gancher S T, Nutt J G, Brunt E R P, Smith E A, Kramer P, Litt M.
Episodic ataxia/myokymia syndrome is associated with point mutations in the human
potassium channel gene, KCNA 1.
Nat Genet.
1994;
8
136-140
- 23
Schroeder B C, Kubisch C, Stein V, Jentsch T J.
Moderate loss of function of cyclic-AMP-modulated KCNQ2/KCNQ3 K+ channels causes epilepsy.
Nature.
1998;
396
687-690
- 24
Shi G, Trimmer J S.
Differential asparagine-linked glycosylation of voltage-gated K+ channels in mammalian
brain and in transfected cells.
J Membr Biol.
1999;
168
265-273
- 25
Friederich P, Urban B W.
The inhibition of human neuronal K+ currents by general anesthetic agents is altered
by extracellular K.
Brain Res Mol Brain Res.
1998;
60
301-304
- 26
Heinemann U, Konnerth A, Pumain R, Wadman W J.
Extracellular calcium and potassium concentration changes in chronic epileptic brain
tissue.
Adv Neurol.
1986;
44
641-661
- 27
Jensen M S, Yaari Y.
Role of intrinsic burst firing, potassium accumulation, and electrical coupling in
the elevated potassium model of hippocampal epilepsy.
J Neurophysiol.
1997;
77
1224-1233
- 28
Sykova E.
Extracellular K+ accumulation in the central nervous system.
Prog Biophys Mol Biol.
1983;
42
135-189
1 Gefördert durch BONFOR (PF, O-117.0005)
Dr. Patrick Friederich
Klinik und Poliklinik für Anästhesiologie Universitätsklinik Eppendorf
Martinistraße 52
20246 Hamburg
Email: patrick.friederich@zmmh.uni-hamburg.de