Abstract
The effect of chilling on the intercellular distribution of mRNAs for enzymes of assimilatory
sulfate reduction, the activity of adenosine 5′-phosphosulfate reductase (APR), and
the level of glutathione was analysed in leaves and roots of maize (Zea mays L). At 25 °C the mRNAs for APR, ATP sulfurylase, and sulfite reductase accumulated
in bundle-sheath only, whereas the mRNA for O-acetylserine sulfhydrylase was also
detected in mesophyll cells. Glutathione was predominantly detected in mesophyll cells;
however, oxidized glutathione was equally distributed between the two cell types.
Chilling at 12 °C induced oxidative stress which resulted in increased concentrations
of oxidized glutathione in both cell types and a prominent increase of APR mRNA and
activity in bundle-sheath cells. After chilling, mRNAs for APR and sulfite reductase,
as well as low APR activity, were detected in mesophyll cells. In roots, APR mRNA
and activity were at higher levels in root tips than in the mature root and were greatly
increased after chilling. These results demonstrate that chilling stress affected
the levels and the intercellular distribution of mRNAs for enzymes of sulfate assimilation.
Abbreviations
APR: adenosine 5′-phosphosulfate reductase
ATPS: adenosine triphosphate sulfurylase
BSC: bundle sheath cells
GSH: glutathione
GSSG: glutathione oxidized
MC: mesophyll cells
NR: nitrate reductase
OAS-TL: O-acetylserine sulfhydrylase
ROS: reactive oxygen species
Rubisco: ribulose bisphosphate carboxylase
SiR: sulfite reductase
Key words
C4 photosynthesis - cysteine biosynthesis - glutathione -
in situ RNA hybridization - maize - oxidative stress - sulfate assimilation
References
- 01 Asada, K.. (1994) In Causes of photooxidative stress and amelioration of defense
systems. Foyer, C. H., Mullineaux, P. M., eds. Boca Raton; CRC Press pp. 77-104
- 02
Bick, J. A.,, Aslund, F.,, Chen, Y.,, and Leustek, T..
(1998);
Glutaredoxin function for the carboxyl-terminal domain of the plant-type 5′-adenylylsulfate
reductase.
Proc. Natl. Acad. Sci. USA.
95
8404-8409
- 03
Boese, S. R.,, Wolfe, D. W.,, and Melkonian, J. J..
(1997);
Elevated CO2 mitigates chilling-induced water stress and photosynthetic reduction during chilling.
Plant Cell Environ..
20
625-632
- 04
Bowler, C.,, Montagu, M.,, and Inzé, D..
(1992);
Superoxide dismutase and stress tolerance.
Annu. Rev. Plant Physiol. Plant Mol. Biol..
43
83-116
- 05
Bradford, M. M..
(1976);
A rapid and sensitive method for the quantification of microgram quantities of protein
utilizing the principle of protein-dye-binding.
Anal. Biochem..
72
248-254
- 06
Brander, K. A.,, Owttrim, G. W.,, and Brunold, C..
(1995);
Isolation of a cDNA (EMBL X85803) encoding a putative chloroplastic isoform of cysteine
synthase from maize (PGR95-031).
Plant Physiol..
108
1748
- 07
Brunner, M.,, Kocsy, G.,, Rüegsegger, A.,, Schmutz, D.,, and Brunold, C..
(1995);
Effect of chilling on assimilatory sulfate reduction and glutathione synthesis in
maize.
J. Plant Physiol..
146
743-747
- 08 Brunold, C.. (1990)
Reduction of sulfate to sulfide. Sulfur nutrition and sulfur assimilation in higher plants. Rennenberg, H., Brunold,
C., De Kok, L. J., Stulen, I., eds. The Hague; SPB Academic Publishing pp. 13-31
- 09 Brunold, C.. (1993)
Regulatory interactions between sulfate and nitrate assimilation. Sulfur nutrition and sulfur assimilation in higher plants. De Kok, L. J. et al.,
eds. The Hague; SPB Academic Publishing pp. 61-75
- 10
Brunold, C., and Schmidt, A..
(1976);
Regulation of adenosine 5′-phosphosulfate sulfotransferase activity by H2S in Lemna minor L.
Planta.
133
85-88
- 11
Brunold, C., and Suter, M..
(1989);
Localization of enzymes of assimilatory sulfate reduction in pea roots.
Planta.
179
228-234
- 12 Brunold, C., and Suter, M.. (1990)
Adenosine 5′-phosphosulfate sulfotransferase. Methods in Plant Biochemistry, Vol. 3. Lea, P., ed. London; Academic Press pp. 339-343
- 13
Buchanan, B. B., and Schürmann, P..
(1973);
Regulation of ribulose 1,5-diphosphate carboxylase in the photosynthetic assimilation
of carbon dioxide.
J. Biol. Chem..
248
4956-4964
- 14
Burgener, M.,, Suter, M.,, Jones, S.,, and Brunold, C..
(1998);
Cyst(e)ine is the transport metabolite of assimilated sulfur from bundle-sheath to
mesophyll cells in maize leaves.
Plant Physiol..
116
1315-1322
- 15
Burnell, J. N..
(1984);
Sulfate assimilation in C4 plants.
Plant Physiol..
75
873-875
- 16
Doulis, A. G.,, Debian, N.,, Kingston-Smith, A., and Foyer, C. H..
(1997);
Differential localization of antioxidants in maize leaves.
Plant Physiol..
114
1031-1037
- 17
Farago, S., and Brunold, C..
(1990);
Regulation of assimilatory sulfate reduction by herbicide safeners in Zea mays L.
Plant Physiol..
94
1808-1812
- 18
Flemming, A., Mandel, T.,, Roth, I.,, and Kuhlemeier, C..
(1993);
The patterns of gene expression in the tomato shoot apical meristem.
Plant Cell.
5
297-309
- 19
Foyer, C. H., and Halliwell, B..
(1976);
The presence of glutathione and glutathione reductase in chloroplasts, a proposed
role in ascorbic acid metabolism.
Planta.
133
21-25
- 20
Foyer, C. H.,, Descourvières, P.,, and Kunert, K. J..
(1994 a);
Protection against oxygen radicals, an important defence mechanism studied in transgenic
plants.
Plant Cell Environ..
17
507-523
- 21
Foyer, C. H.,, Lelandais, M.,, and Kunert, K. J..
(1994 b);
Photooxidative stress in plants.
Physiol. Plant..
92
696-717
- 22
Gerwick, B. C.,, Ku, S. B.,, and Black, C. C..
(1980);
Initiation of sulfate activation: a variation in C4 photosynthesis plants.
Science.
209
513-515
- 23
Ghisi, R.,, Anaclerio, F.,, and Passera, C..
(1986);
Effects of nitrogen deprivation on the ATP-sulphurylase and O-acetylserine sulphhydrylase
activites of mesophyll protoplasts and bundle sheath strands of maize leaves.
Biol. Plant..
28
144-119
- 24
Guy, C. I.,, Carter, J. V.,, Yelenosky, G.,, and Guy, C. T..
(1984);
Changes in glutathione content during cold acclimation in Cornus sericea and Citrus sinensis.
.
Cryobiology.
21
443-453
- 25
Hatch, M. D..
(1979);
Regulation of C4 photosynthesis, factors affecting cold-mediated inactivation and reactivation of
pyruvate Pi-dikinase.
Aust. J. Plant Physiol..
6
607-619
- 26 Henschel, G.. (1970) Untersuchungen über die Aufnahme von 15N-markiertem Harnstoff bei Phaseolus vulgaris l. University of Hohenheim, Stuttgart, Germany; PhD thesis
- 27
Hodgson, R. A. J., and Raison, J. K..
(1991);
Superoxide production by thylakoids during chilling and its implication in the susceptibility
of plants to chilling-induced photoinhibition.
Planta.
183
220-228
- 28 Jecklin, S.. (1997) Effect of oxidative stress on assimilatory sulfate reduction
in maize (Zea mays L.) roots. University of Bern; Diploma work
- 29
Kast, D.,, Stalder, M.,, Rüegsegger, A.,, Galli, U.,, and Brunold, C..
(1995);
Effects of NO2 and nitrate on sulfate assimilation in maize.
J. Plant Physiol..
147
9-14
- 30
Kocsy, G.,, Owttrim, G.,, Brander, K.,, and Brunold, C..
(1997);
Effect of chilling on the diurnal rhythm of enzymes involved in protection against
oxidative stress in a chilling-tolerant and a chilling-sensitive maize genotype.
Physiol. Plant..
99
249-254
- 31
Kopriva, S.,, Muheim, R.,, Koprivova, A.,, Trachsler, N.,, Catalano, C.,, Suter,
M.,, and Brunold, C..
(1999);
Light regulation of assimilatory sulfate reduction in Arabidopsis thaliana.
.
Plant J..
20
37-44
- 32 Kopriva, S.,, Suter, M.,, Weber, M.,, Schürmann, P.,, and Brunold, C.. (2000)
Characterization of APS reductase enzyme purified from Arabidopsis thaliana.
. Sulfur Nutrition and Sulfur Assimilation in Higher Plants: molecular, biochemical
and physiological aspects. Brunold, C., Rennenberg, H., De Kok, L. J., Stulen, I.,
and Davidian, J. C., eds. Bern; Paul Haupt Verlag pp. 223-224
- 33
Koprivova, A.,, Suter, M.,, Op den Camp, R.,, Brunold, C.,, and Kopriva, S..
(2000);
Regulation of sulfate assimilation by nitrogen in Arabidopsis.
.
Plant Physiol..
122
737-746
- 34
Krause, G. H..
(1988);
Photoinhibition of photosynthesis. An evaluation of damaging and protective mechanisms.
Physiol. Plant..
74
566-574
- 35
Lappartient, A. G., and Touraine, B..
(1996);
Demand-driven control of root ATP sulfurylase activity and SO4
2- uptake in intact canola.
Plant Physiol..
111
147-157
- 36
Leegood, R. C..
(1985);
The intercellular compartmentation of metabolites in leaves of Zea mays L.
Planta.
164
163-171
- 37
Levitt, J..
(1962);
A sulphydryl-disulphide hypothesis of frost injury and resistance in plants.
J. Theor. Biol..
3
355-391
- 38
Lieberman, M.,, Craft, C. C.,, Audia, W. V.,, and Wilcox, M. S..
(1958);
Biochemical studies of chilling injury in sweet potatoes.
Plant Physiol..
5
307-311
- 39
Lyons, J. M., and Asmundson, C. M..
(1965);
Solidification of saturated/unsaturated fatty acid mixtures and its relationship to
chilling sensitivity in plants.
J. Am. Oil. Chem. Soc..
42
1056-1058
- 40
Lyons, J. M., and Raison, J. K..
(1970);
Oxidative activity of mitochondria isolated from plant tissues sensitive and resistant
to chilling injury.
Plant Physiol..
45
386-389
- 41
Massacci, A.,, Iannelli, M. A.,, Pietrini, F.,, and Loreto, F..
(1995);
The effect of growth at low temperature on photosynthetic characteristics and mechanisms
of photoprotection of maize leaves.
J. Exp. Bot..
46
119-127
- 42
May, M. J.,, Vernoux, T.,, Leaver, C.,, van Montagu, M.,, and Inzé, D..
(1998);
Glutathione homeostasis in plants: implications for environmental sensing and plant
development.
J. Exp. Bot..
49
649-667
- 43
Mills, W. R., and Joy, K. W..
(1980);
A method for isolation of purified physiologically active chloroplasts, used to study
the intracellular distribution of amino acids in pea leaves.
Planta.
148
75-83
- 44
Moore, R., and Black, C. C..
(1979);
Nitrogen assimilation pathways in leaf mesophyll and bundle sheath cells of C4 photosynthesis plants formulated from comparative studies with Digitaria sanguinalis (L.) Scop.
Plant Physiol..
64
309-313
- 45
Neyra, C. A., and Hagemann, R. H..
(1975);
Nitrate uptake and induction of nitrate reductase in excised corn roots.
Plant Physiol..
56
692-695
- 46
Noctor, G.,, Arisi, A.-C. M.,, Jouanin, L.,, Kunert, K. J.,, Rennenberg, H.,,
and Foyer, C. H..
(1998);
Glutathione: biosynthesis, metabolism and relationship to stress tolerance explored
in transformed plants.
J. Exp. Bot..
49
623-647
- 47
Nussbaum, S.,, Schmutz, K.,, and Brunold, C..
(1988);
Regulation of assimilatory sulfate reduction by cadmium in Zea mays L.
Plant Physiol..
88
1407-1410
- 48
Passera, C., and Ghisi, R..
(1982);
ATP sulphurylase and O-acetylserine sulphhydrylase in isolated mesophyll protoplasts
and bundle sheath strands of S-deprived maize leaves.
J. Exp. Bot..
33
432-438
- 49
Pastori, G. M.,, Mullineaux, P. M.,, and Foyer, C. H..
(2000);
Post-transcriptional regulation prevents accumulation of glutathione reductase protein
and activity in the bundle sheath cells of maize.
Plant Physiol..
122
667-675
- 50
Prasad, T. K.,, Anderson, M. D.,, Martin, B. A.,, and Stewart, C. R..
(1994);
Evidence for chilling-induced oxidative stress in maize seedlings and a regulatory
role for hydrogen peroxide.
Plant Cell.
6
65-74
- 51
Reinhardt, D.,, Wittwer, F.,, Mandel, T.,, and Kuhlemeier, C..
(1998);
Localized upregulation of a new expansin gene predicts the site of leaf formation
in the tomato meristem.
Plant Cell.
10
1427-1437
- 52
Rennenberg, H., and Brunold, C..
(1994);
Significance of glutathione metabolism in plants under stress.
Progr. Bot..
55
144-156
- 53
Rüegsegger, A., and Brunold, C..
(1992);
Effect of cadmium on γ-glutamylcysteine synthesis in maize seedlings.
Plant Physiol..
99
428-433
- 54
Schmutz, D., and Brunold, C..
(1984);
Intercellular localization of assimilatory sulfate reduction in leaves of Zea mays and Triticum aestivum.
.
Plant Physiol..
74
866-870
- 55
Schmutz, D., and Brunold, C..
(1985);
Localization of nitrite and sulfite reductase in bundle sheath and mesophyll cells
of maize leaves.
Physiol. Plant..
64
523-528
- 56
Schupp, R., and Rennenberg, H..
(1988);
Diurnal changes in the glutathione content of spruce needles (Picea abies L.).
Plant Sci..
57
113-117
- 57
Suter, M.,, von Ballmoos, P.,, Kopriva, S.,, Op den Camp, R.,, Schaller, J.,,
Kuhlemeier, C.,, Schürmann, P.,, and Brunold, C..
(2000);
Adenosine 5′-phosphosulfate sulfotransferase and adenosine 5′-phosphosulfate reductase
are identical enzymes.
J. Biol. Chem..
275
930-936
- 58
Takahashi, H.,, Yamazaki, M.,, Sasakura, N.,, Watanabe, A.,, Leustek, T.,, Engler,
J. A.,, Engler, G.,, Van Montagu, M.,, and Saito, K..
(1997);
Regulation of sulfur assimilation in higher plants: a sulfate transporter induced
in sulfate-starved roots plays a central role in Arabidopsis thaliana.
.
Proc. Natl. Acad. Sci. USA.
94
11102-11107
- 59
Walker, M. A., and McKersie, B. D..
(1993);
Role of the ascorbate-glutathione antioxidant system in chilling resistance of tomato.
J. Plant Physiol..
141
234-239
- 60
Westhoff, P.,, Offermann-Steinhard, K.,, Höfer, M.,, Eskins, K.,, Oswald, A.,,
and Streubel, M..
(1991);
Differential accumulation of plastid transcripts encoding photosystem II components
in the mesophyll and bundle-sheath cells of monocotyledonous NADP-malic enzyme-type
C4 plants.
Planta.
184
377-388
- 61
Wise, R. R., and Naylor, A. W..
(1987);
Chilling-enhanced photooxidation.
Plant Physiol..
83
278-282
- 62
Wright, M., and Simon, E. W..
(1973);
Chilling injury in cucumber leaves.
J. Exp. Bot..
79
400-411
- 63
Wyss, H. R., and Brunold, C..
(1979);
Regulation of adenosine 5′-phosphosulfate sulfotransferase activity by H2S and cysteine in primary leaves of Phaseolus vulgaris L.
Planta.
147
37-42
S. Kopriva
Institut für Forstbotanik und Baumphysiologie
Am Flughafen 17
79085 Freiburg
Germany
Email: kopriva@uni-freiburg.de
Section Editor: H. Rennenberg