Int J Sports Med 2001; 22(3): 186-191
DOI: 10.1055/s-2001-16385
Physiology and Biochemistry

Georg Thieme Verlag Stuttgart ·New York

Calf Muscle Strength in Humans

S. W.  Trappe,  T. A.  Trappe,  G. A.  Lee,  D. L.  Costill
  • Human Performance Laboratory, Ball State University, Muncie, IN, USA
Further Information

Publication History

Publication Date:
31 December 2001 (online)

In an effort to measure strength characteristics of the calf muscles, 18 subjects (14 male, 4 female, age = 34.3 ± 2.4 yrs) were tested using a specially designed torque velocity device (TVD). This TVD is a hardware interface with the subject's lower leg which stabilizes the leg for calf muscle strength measurements. Calf muscle strength measurements consisted of 1) isometric force production at ankle angles of 80, 90, and 100 degrees of plantar flexion, 2) peak torque at six isokinetic angular velocities 0.52, 1.05, 2.09, 3.14, 4.19, and 5.24 rad × s-1, and 3) a fatigue test consisting of 30 maximal contractions at 3.14 rad × s-1. The greatest force production occurred at 80 degrees of ankle plantar flexion (148.5 ± 40.2 Nm). Isokinetic force production ranged from 114.1 ± 24.7 Nm at 0.52 rad × s-1 to 16.8 ± 6.5 Nm at 5.24 rad × s-1. A fatigue test consisting of 30 maximal repetitions at 3.14 rad × s-1 resulted in a 61 ± 15 % decline in force production. To assess reproducibility and day to day variation, measurements at 1.05 and 2.09 rad × s-1 were made during five different trials in a single day and one trial per day for three days, respectively. The within subject coefficient of variation was 2.6 to 6.5 % for reproducibility and 1.9 to 7.4 % for day to day variation. Magnetic resonance imaging (MRI) of the lower limb and muscle biopsy specimens from the gastrocnemius (lateral head) and soleus muscles were obtained to examine the relationship between strength and morphological characteristics of the calf muscles. Cross-sectional area of the primary plantar flexors (gastrocnemius and soleus) was 47.9 ± 1.3 cm2 while muscle volume was 642 ± 16 cm3. Muscle fiber composition of the gastrocnemius and soleus averaged 57 ± 2 and 85 ± 3 % type I fibers, respectively. A poor correlation was found between fiber type and maximal isometric force production (r = 0.38; p > 0.05). However, calf muscle strength and muscle size was positively correlated (r = 0.76; p < 0.05). These data indicate that using the TVD interface to stabilize the lower leg is a reliable and reproducible procedure for the measurement of calf muscle strength.

References

  • 1 Berg H E, Tedner B, Tesch P A. Changes in lower limb muscle cross-sectional area and tissue-fluid volume after transition from standing to supine.  Acta Physiol Scand. 1993;  148 379-385
  • 2 Bergstrom J. Muscle electrolytes in man.  Scand J Clin Lab Invest. 1962;  14 7-110
  • 3 Brooke M H, Kaiser K K. Three 'myosin adenosine triphosphate' systems: the nature of their pH liability and sulfhydryl dependence.  J Histochem and Cytochem. 1970;  18 670-672
  • 4 Caiozzo V J, Perrine J J, Edgerton V R. Training-induced alterations of the in vivo force-velocity relationship of human muscle.  J Appl Physiol. 1981;  51 750-754
  • 5 Costill D L, Daniels W J, Evans W J, Fink W J, Krahenbuhl G, Saltin B. Skeletal muscle enzymes and fiber composition in male and female track athletes.  J Appl Physiol. 1976;  40 149-154
  • 6 Cunningham D A, Morrison D, Rice C L, Cooke C. Ageing and isokinetic plantar flexion.  Europ J Appl Physiol. 1987;  56 24-29
  • 7 Dudley G A, Harris R T, Duvosin M R, Hather B M, Buchanan P. Effect of voluntary vs artificial activation on the relationship of muscle torque to speed.  J Appl Physiol. 1990;  69 2215-2221
  • 8 Fugl-Meyer A R. Maximal isokinetic ankle plantar and dorsal flexion torques in trained subjects.  Europ J Appl Physiol. 1981;  47 393-404
  • 9 Fugl-Meyer A R, Gustafsson L, Burstedt Y. Isokinetic and static plantar flexion characteristics.  Europ J Appl Physiol. 1980;  45 221-234
  • 10 Fukunaga T, Roy R R, Shellock F G, Hodgson J A, Edgerton V R. Specific tension of human plantar flexors and dorsiflexors.  J Appl Physiol. 1996;  80 158-165
  • 11 Gollnick P D, Sjodin B, Karlsson J, Jansson E, Saltin B. Human soleus muscle: a comparison of fibre composition and enzyme activities with other leg muscles.  Pflugers Arch. 1974;  348 247-255
  • 12 Grieve D W, Cavanagh P R, Pheasant S. Prediction of gastrocnemius length from knee and ankle joint posture.  Biomechanics IV. Baltimore, MD; University Park 1978: 405-412
  • 13 Hill A V. The heat of shortening and the dynamic constants of muscle.  Proceedings of the Royal Society of London, Series B,. 1938;  126 136-195
  • 14 Ivy J L, Withers R T, Brose G, Maxwell B D, Costill D L. Isokinetic contractile properties of the quadriceps with relation to fiber type.  J Appl Physiol. 1981;  47 247-255
  • 15 Padykula H A, Herman E. The specificity of the histochemical method for adenosine thriphosphatase.  J Histochem and Cytochem. 1955;  3 170-183
  • 16 Perrine J J, Edgerton V R. Muscle force-velocity and power-velocity relationships under isokinetic loading.  Medicine and Science in Sports and Exercise. 1978;  10 159-166
  • 17 Thorstensson A, Grimby G, Karlsson J. Force-velocity relations and fiber composition in human knee extensor muscles.  J Appl Physiol. 1976;  40 12-16
  • 18 Wickiewicz T L, Roy R R, Powell P L, Perrine J J, Edgerton V R. Muscle architecture and force-velocity relationships in humans.  J Appl Physiol. 1984;  57 435-443

S. W. TrappePh. D. 

Human Performance Laboratory
Ball State University

Muncie
IN 47306
USA


Phone: Phone:+ 1 (765) 285-1145

Fax: Fax.+ 1 (765) 285-8596

Email: E-mail:strappe@bsu.edu

    >