Zusammenfassung
Hintergrund: Mehrere Arbeitsgruppen haben im Tierexperiment demonstriert, dass eine Gentherapie
zur Innenohrintervention geeignet sein kann. Verschiedene Zugangswege sind hierfür
am Versuchstier erfolgreich angewendet worden. Um das Risiko einer Innenohrschädigung
durch eine Eröffnung des Perilymphraums im Rahmen der Vektorapplikation zu vermeiden,
wurde in dieser Arbeit untersucht, ob durch eine Mittelohrapplikation eines adenoviralen
Vektors ein konstanter Innenohr-Gentransfer erreicht werden kann. Methode: Eine einseitige Mittelohrapplikation eines adenoviralen Vektors erfolgte in 4 Meerschweinchen
entweder direkt auf die Rundfenstermembran (RFM), oder in 4 Tieren über ein auf die
RFM platziertes Gaze-Depot. Die Expression eines Reportergens (lacZ) wurde zur Lokalisation
transduzierter Zellen genutzt. Ergebnisse: Nur in einem von 8 untersuchten Versuchstieren konnte eine intracochleäre Expression
des Reportergens nachgewiesen werden, während alle 8 Tiere eine starke lacZ-Expression
in der Mittelohrmukosa, der RFM und in der den Stapes überziehenden Schleimhaut zeigten.
Schlussfolgerungen: Die Ergebnisse weisen auf eine Unpassierbarkeit der RFM für den adenoviralen Vektor
hin. Eine Mittelohrapplikation des adenoviralen Vektors ist nicht geeignet, um einen
konstanten intracochleären Gentransfer zu erreichen. Ein Mittelohr-Gentransfer könnte
aber eine potenzielle Interventionsmöglichkeit zur Behandlung von Erkrankungen der
Mittelohrmukosa darstellen.
Evaluation of Inner Ear Gene Transfer Following Middle Ear Application of an Adenoviral
Vector
Background: Several groups demonstrated in animal experiments that gene transfer is a feasible
tool for inner ear intervention. Various approaches for inoculation of vectors have
been successfully used for inner ear gene therapy. One possible way to reduce the
risk of hearing loss following the opening of the cochlea for application of the vector
into the perilymphatic space is to deliver vectors through the round window. This
study was designed to determine whether middle ear application of an adenoviral vector
is a feasible approach to inoculate vectors and lead to transduction of cells in the
inner ear. Methods: A unilateral middle ear application of an adenoviral vector was performed in 4 guinea
pigs directly on the round window membrane (RWM) and in 4 additional animals by placing
a cotton patch soaked with the vector solution on the RWM. The expression of a reporter
gene (lacZ) was used to localize vector-transduced cells. Results: Only one out of 8 animals showed cochlear expression of the reporter gene, whereas
all 8 animals showed strong lacZ expression in the middle ear mucosa, in the RWM and
in the mucosa surrounding the stapes. Conclusion: Our results indicate that the RWM presents a close barrier, almost completely preventing
the adenovirus to diffuse into the perilymphatic space. Therefore middle ear application
of an adenoviral vector cannot be used to induce inner ear gene transfer. However,
middle ear application of a viral vector may be useful for developing treatment for
diseases of the middle ear mucosa.
Schlüsselwörter:
Cochlea - Adenovirus - Gentransfer - Mittelohr - Rundfenstermembran - Stapes
Key words:
Cochlea - Adenovirus - Gene transfer - Middle ear - Round window membrane - Stapes
Literatur
1
Raphael Y, Frisancho J C, Roessler B J.
Adenoviral-mediated gene transfer into guinea pig cochlear cells in vivo.
Neurosci Lett.
1996;
207
137-141
2
Dazert S, Battaglia A, Ryan A F.
Transfection of neonatal rat cochlear cells in vitro with an adenovirus vector.
Int J Dev Neurosci.
1997;
15
595-600
3
Lalwani A K, Walsh B J, Reilly P G, Muzyczka N, Mhatre A N.
Development of in vivo gene therapy for hearing disorders: introduction of adeno-associated
virus into the cochlea of the guinea pig.
Gene Ther.
1996;
3
588-592
4
Geschwind M D, Hartnick C J, Liu W, Amat J, Van De Water T R, Federoff H J.
Defective HSV-1 vector expressing BDNF in auditory ganglia elicits neurite outgrowth:
model for treatment of neuron loss following cochlear degeneration.
Hum Gene Ther.
1996;
7
173-182
5
Kiernan A E, Fekete D M.
In vivo gene transfer into the embryonic inner ear using retroviral vectors.
Audiol Neurootol.
1997;
2
12-24
6
Staecker H, Gabaizadeh R, Federoff H, Van De Water T R.
Brain-derived neurotrophic factor gene therapy prevents spiral ganglion degeneration
after hair cell loss.
Otolaryngol Head Neck Surg.
1998;
119
7-13
7
Yagi M, Magal E, Sheng Z, Ang K A, Raphael Y.
Hair cell protection from aminoglycoside ototoxicity by adenovirus-mediated overexpression
of glial cell line-derived neurotrophic factor.
Hum Gene Ther.
1999;
10
813-823
8
Suzuki M, Yagi M, Brown J N, Miller A L, Miller J M, Raphael Y.
Effect of transgenic GDNF expression on gentamicin-induced cochlear and vestibular
toxicity.
Gene Ther.
2000;
7
1046-1054
9
Stöver T, Yagi M, Raphael Y.
Cochlear gene transfer: round window versus cochleostomy inoculation.
Hear Res.
1999;
136
124-130
10
Carvalho G J, Lalwani A K.
The effect of cochleostomy and intracochlear infusion on auditory brain stem response
threshold in the guinea pig.
Am J Otol.
1999;
20
87-90
11
Schreiner L.
Neuere experimentelle und klinische Erkenntnisse zur Frage einer interlabyrinthären
Verbindung.
Laryngo-Rhino-Otol.
1999;
78
387-393
12
Stöver T, Yagi M, Raphael Y.
Transduction of the contralateral ear after adenovirus-mediated cochlear gene transfer.
Gene Ther.
2000;
7
377-383
13
Davidson B L, Allen E D, Kozarsky K F, Wilson J M, Roessler B J.
A model system for in vivo gene transfer into the central nervous system using an
adenoviral vector.
Nat Genet.
1993;
3
219-223
14
Weiss M A, Frisancho J C, Roessler B J, Raphael Y.
Viral-mediated gene transfer in the cochlea.
Int J Dev Neurosci.
1997;
15
577-583
15
Komeda M, Roessler B J, Raphael Y.
The influence of interleukin-1 receptor antagonist transgene on spiral ganglion neurons.
Hear Res.
1999;
131
1-10
16
Mondain M, Restituito S, Vincenti V, Gardiner Q, Uziel A, Delabre A, Mathieu M, Bousquet J,
Demoly P.
Adenovirus-mediated in vivo gene transfer in guinea pig middle ear mucosa.
Hum Gene Ther.
1998;
9
1217-1221
17
Brady D R, Pearce J P, Juhn S K.
Permeability of round window membrane to 22Na or RISA.
Arch Otorhinolaryngol.
1976;
214
183-184
18
Brummett R E, Harris R F, Lindgren J A.
Detection of ototoxicity from drugs applied topically to the middle ear space.
Laryngoscope.
1976;
86
1177-1187
19
Marks S, Arenberg I K, Hoffer M E.
Round-Window-Mikrokatheter-assistierte Mikrodosierung von Gentamycin: Alternative
in der Behandlung des Tinnitus bei Patienten mit Morbus Menière.
Laryngo-Rhino-Otol.
2000;
79
327-331
20
Goldberg B, Goycoolea M V, Schleivert P M, Shea D, Schachern P, Paparella M M, Carpenter A M.
Passage of albumin from the middle ear to the inner ear in otitis media in the chinchilla.
Am J Otolaryngol.
1981;
2
210-214
21
Horwitz M S, Scharff M D, Maizel Jr J V.
Synthesis and assembly of adenovirus 2. I. Polypeptide synthesis, assembly of capsomeres,
and morphogenesis of the virion.
Virology.
1969;
39
682-694
22
Niedermeyer H P, Arnold W.
Otosclerosis: a measles virus associated inflammatory disease.
Acta Otolaryngol.
1995;
115
300-303
23
Grayeli A B, Sterkers O, Roulleau P, Elbaz P, Ferrary E, Silve C.
Parathyroid hormone-parathyroid hormone-related peptide receptor expression and function
in otosclerosis.
Am J Physiol.
1999;
277
1005-1012
24
McPhee J R, Gordon M A, Ruben R J, Van de Water T R.
Evidence of abnormal stromelysin mRNA expression in suspected carriers of otosclerosis.
A possible molecular marker.
Arch Otolaryngol Head Neck Surg.
1993;
119
1108-1116
25
Thies C, Sperling K, Reis A, Handrock M.
Die kleine Fehlbildung des Mittelohres - ein genetisch bedingter Defekt?.
HNO.
1998;
46
757-761
26
McKenna M J, Kristiansen A G, Bartley M L, Rogus J J, Haines J L.
Association of COL1A1 and otosclerosis: evidence for a shared genetic etiology with
mild osteogenesis imperfecta.
Am J Otol.
1998;
19
604-610
Dr. Timo Stöver
Hals-Nasen-Ohrenklinik der Medizinischen Hochschule Hannover
Carl-Neuberg-Straße 1 30625 Hannover
Email: E-mail: Stoever.Timo@MH-Hannover.de