Subscribe to RSS
DOI: 10.1055/s-2001-17949
Gene Therapy of Mitochondrial DNA Mutations: A Brief, Biased History of Allotopic Expression in Mammalian Cells
Publication History
Publication Date:
18 October 2001 (online)

ABSTRACT
Successful treatment of mitochondrial DNA (mtDNA) mutations might be possible by construction of mtDNA-encoded protein genes so that they can be inserted into the nuclear genome and the protein expressed in the mitochondria (allotopic expression). This technique would require individual assembly of all 13 mtDNA-encoded protein genes with an aminoterminal leader peptide that directs the cytoplasmic translated protein to the mitochondrial membrane. The 13 allotopic genes could be inserted into the nuclear genome of a patient's stem cell that had been ``cured'' of its nascent mtDNA via ethidium bromide treatment (rho-zero cell). The rho-zero cell would be a uridine auxotroph, and recovery from uridine auxotrophy would indicate successful transformation. The patient's own cells could then be returned to the patient's body. With a selective advantage of recovered oxidative phosphorylation, the transformed cells could replace cells with mtDNA mutations. Results of experiments by us on allotopically expressed CHO ATPase6 and of experiments by other workers suggest that there might be competition with endogenous mtDNA-encoded proteins if the particular protein gene is not removed from the endogenous mitochondrial genomes. Thus, it is likely that all 13 mtDNA-encoded protein genes will need to be allotopically expressed, with concomitant removal of all mtDNA genomes, in order for this form of mtDNA gene therapy to be successful.
KEYWORD
Allotopic gene expression - mitochondrial DNA - gene therapy - ATPase6 - Leigh syndrome - oxidative phosphorylation - mitochondrial disease - somatic mutations - mitochondrial targeting leader sequence - heteroplasmy
REFERENCES
- 1 Michikawa Y, Mazzucchelli F, Bresolin N, Scarlato G, Attardi G. Aging-dependent large accumulation of point mutations in the human mtDNA control region for replication. Science . 1999; 286 774-779
- 2 Wallace D C, Bunn C L, Eisenstadt J M. Cytoplasmic transfer of chloramphenicol resistance in human tissue culture cells. J Cell Biol . 1975; 67 174-188
- 3 King M P, Attardi G. Injection of mitochondria into human cells leads to a rapid replacement of the endogenous mitochondrial DNA. Cell . 1988; 52 811-819
- 4 Inoue K, Nakada K, Ogura A. Generation of mice with mitochondrial dysfunction by introducing mouse mtDNA possessing a deletion into zygotes. Nature Genetics . 2000; 26 176-181
- 5 Levy S E, Waymire K G, Kim Y L, MacGregor G R, Wallace D C. Transfer of chloramphenicol-resistant mitochondrial DNA into the chimeric mouse. Transgenic Res . 1999; 8 137-145
- 6 Trounce I, Schmiedel J, Yen H C. Cloning of neuronal mtDNA variants in cultured cells by synaptosome fusion with mtDNA-less cells. Nucleic Acids Res . 2000; 28 2164-2170
- 7 Sligh J E, Levy S E, Waymire K G. Maternal germ-line transmission of mutant mtDNAs from embryonic stem cell-derived chimeric mice. Proc Natl Acad Sci U S A . 2000; 97 14461-14466
- 8 Kolesnikova O A, Entelis N S, Mireau H, Fox T D, Martin R P, Tarassov I A. Suppression of mutations in mitochondrial DNA by tRNAs imported from the cytoplasm. Science . 2000; 289 1931-1933
- 9 Chomyn A, Enriquez J A, Micol V, Fernandez-Silva P, Attardi G. The mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episode syndrome-associated human mitochondrial tRNALeu(UUR) mutation causes aminoacylation deficiency and concomitant reduced association of mRNA with ribosomes. J Biol Chem . 2000; 275 19198-19209
- 10 Wallace D C. Report of the committee on human mitochondrial DNA. Cytogenet Cell Genet . 1989; 51 612-621
- 11 Neupert W, Hartl F U, Craig E A, Pfanner N. How do polypeptides cross the mitochondrial membranes?. Cell . 1990; 63 447-450
- 12 Isaya G, Kalousek F, Fenton W A, Rosenberg L E. Cleavage of precursors by the mitochondrial processing peptidase requires a compatible mature protein or an intermediate octapeptide. J Cell Biol . 1991; 113 65-76
- 13 Wallace D C, Brown M D, Lott M T. Mitochondrial DNA variation in human evolution and disease. Gene . 1999; 238 211-230
- 14 Guan M X, Fischel-Ghodsian N, Attardi G. A biochemical basis for the inherited susceptibility to aminoglycoside ototoxicity. Hum Mol Genet . 2000; 9 1787-1793
- 15 Shoffner J M, Fernhoff P M, Krawiecki N S. Subacute necrotizing encephalopathy: oxidative phosphorylation defects and the ATPase 6 point mutation. Neurol . 1992; 42 2168-2174
- 16 Chinnery P F, Samuels D C. Relaxed replication of mtDNA: a model with implications for the expression of disease. Am J Hum Genet . 1999; 64 1158-1165
- 17 Linnane A W, Marzuki S, Ozawa T, Tanaka M. Mitochondrial DNA mutations as an important contributor to ageing and degenerative diseases. Lancet . 1989; 1 642-645
- 18 Wallace D C, Singh G, Lott M T. Mitochondrial DNA mutation associated with Leber's hereditary optic neuropathy. Science . 1988; 242 1427-1431
- 19 Huoponen K, Vilkki J, Savontaus M L, Aula P, Nikoskelainen E K. Analysis of mitochondrial ND4 gene DNA sequence in Finnish families with hereditary optic neuroretinopathy. Genomics . 1990; 8 583-585
- 20 Holt I J, Harding A E, Petty R K, Morgan-Hughes J A. A new mitochondrial disease associated with mitochondrial DNA heteroplasmy. Am J Hum Genet . 1990; 46 428-433
- 21 Poulton J, Deadman M E, Gardiner R M. Duplications of mitochondrial DNA in mitochondrial myopathy. Lancet . 1989; 1 236-240
- 22 Poulton J, Deadman M E, Gardiner R M. Tandem direct duplications of mitochondrial DNA in mitochondrial myopathy: analysis of nucleotide sequence and tissue distribution. Nucl Acids Res . 1989; 17 10223-10229
- 23 Goto Y, Koga Y, Horai S, Nonaka I. Chronic progressive external ophthalmoplegia: a correlative study of mitochondrial DNA deletions and their phenotypic expression in muscle biopsies. J Neurol Sci . 1990; 100 63-69
- 24 Johns D R, Rutledge S L, Stine O C, Hurko O. Directly repeated sequences associated with pathogenic mitochondrial DNA deletions. Proc Natl Acad Sci U S A . 1989; 86 8059-8062
- 25 Nakase H, Moraes C T, Rizzuto R, Lombes A, DiMauro S, Schon E A. Transcription and translation of deleted mitochondrial genomes in Kearns-Sayre syndrome: implications for pathogenesis. Am J Hum Genet . 1990; 46 418-427
- 26 Zeviani M, Moraes C T, DiMauro S. Deletions of mitochondrial DNA in Kearns-Sayre syndrome. Neurol . 1988; 38 1339-1346
- 27 Wolter K G, Hsu Y T, Smith C L, Nechushtan A, Xi X G, Youle R J. Movement of Bax from the cytosol to mitochondria during apoptosis. J Cell Biol . 1997; 139 1281-1292
- 28 Enriquez J A, Cabezas-Herrera J, Bayona-Bafaluy M P, Attardi G. Very rare complementation between mitochondria carrying different mitochondrial DNA mutations points to intrinsic genetic autonomy of the organelles in cultured human cells. J Biol Chem . 2000; 275 11207-11215
- 29 Harris M H, Vander Heiden G M, Kron S J, Thompson C B. Role of oxidative phosphorylation in Bax toxicity. Mol Cell Biol . 2000; 20 3590-3596
- 30 Bresolin N, Angelini C, Doriguzzi C. Ubidecarenone in mitochondrial myopathies: double-blind multicentric trial. Neurology . 1989 (suppl 1); 39 (259)
- 31 Desnuelle C, Pellissier J F, Serratrice G, Pouget J. Chronic progressive external ophthalmoplegia (CPEO) associated with diaphragm paralysis: successful treatment with coenzyme Q (CoQ). Neurology . 1988 (suppl 1); 38 (102)
- 32 Ihara Y, Namba R, Kuroda S, Sato T, Shirabe T. Mitochondrial encephalomyopathy (MELAS): pathological study and successful therapy with coenzyme Q10 and idebenone. J Neurol Sci . 1989; 90 263-271
- 33 Nishikawa Y, Takahashi M, Yorifuji S. Long-term coenzyme Q10 therapy for a mitochondrial encephalomyopathy with cytochrome c oxidase deficiency: a 31P NMR study. Neurology . 1989; 39 399-403
- 34 Ogasahara S, Yorijuji S, Nishikawa Y. Improvement of abnormal pyruvate metabolism and cardiac conduction defect with coenzyme Q10 in Kearns-Sayre syndrome. Neurology . 1985; 35 372-377
- 35 Ogasahara S, Nishikawa Y, Yorijuji S. Treatment of Kearns-Sayre syndrome with coenzyme Q10. Neurology . 1986; 36 45-53
- 36 Shoffner J M, Voljavec A S, Costigan D A, Hopkins L C, Wallace D C. Chronic external ophthalmoplegia and Ptosis (CEOP): improved retinal cone function with ascorbate, phylloquinone, and coenzyme Q10. Neurology . 1989 (suppl 1); 39 (404)
- 37 Shoffner J M, Voljavec A S, Costigan D A, Souiedan S A, Hopkins L C, Wallace D C. Kearns-Sayre syndrome: a mitochondrial DNA deletion with coenzyme Q10 and succinate treatment response. Neurology . 1989 (suppl 1); 39 (256)
- 38 Mili F, Flanders W D, Sherman S L, Go R C, Wallace D C. Genetic epidemiologic methods to screen for matrilineal inheritance in mitochondrial disorders. Genet Epidemiol . 1996; 13 605-614
- 39 de Vries G H, Niezen-Koning K, Kliphuis J W, Smit G P, Scheffer H, Ten Kate P L. Prevalence of carriers of the most common medium-chain acyl-CoA dehydrogenase (MCAD) deficiency mutation (G985A) in The Netherlands. Hum Genet . 1996; 98 1-2
- 40 Martinez G, Garcia-Lozano J R, Ribes A. High risk of medium chain acyl-coenzyme A dehydrogenase deficiency among gypsies. Ped Res . 1998; 44 83-84
- 41 Pollitt R J, Leonard J V. Prospective surveillance study of medium chain acyl-CoA dehydrogenase deficiency in the UK. Arch Dis Child . 1998; 79 116-119
- 42 Michikawa Y, Mazzucchelli F, Bresolin N, Scarlato G, Attardi G. Aging-dependent large accumulation of point mutations in the human mtDNA control region for replication. Science . 1999; 286 774-779
- 43 Melov S, Lithgow G J, Fischer D R, Tedesco P M, Johnson T E. Increased frequency of deletions in the mitochondrial genome with age of Caenorhabditis elegans. Nucleic Acids Res . 1995; 23 1419-1425
- 44 de Grey D A. Mitochondrial gene therapy: an arena for the biomedical use of inteins. Trends Biotechnol . 2000; 18 394-399
- 45 Nagley P, Devenish R J. Leading organellar proteins along new pathways: the relocation of mitochondrial and chloroplast genes to the nucleus. Trends Biochem Sci . 1989; 14 31-35
- 46 Kolesnikova O A, Entelis N S, Mireau H, Fox T D, Martin R P, Tarassov I A. Suppression of mutations in mitochondrial DNA by tRNAs imported from the cytoplasm. Science . 2000; 289 1931-1933
- 47 Lander E S, Lodish H. Mitochondrial diseases: gene mapping and gene therapy. Cell . 1990; 61 925-926
- 48 Horwich A L, Kalousek F, Mellman I, Rosenberg L E. A leader peptide is sufficient to direct mitochondrial import of a chimeric protein. EMBO J . 1985; 4 1129-1135
- 49 Merril C R, Geier M R, Petricciani J C. Bacterial virus gene expression in human cells. Nature . 1971; 233 398-400
- 50 Geier M R, Merril C R. Lambda phage transcription in human fibroblasts. Virology . 1972; 47 638-643
- 51 Merril C R, Das A K, LaPolla R J, Prissovsky I. Microassay for UDP-galactose 4-epimerase activity. Anal Biochem . 1976; 72 606-613
- 52 Horst J, Stanbro H, Merril C R. On procaryotic gene expression in eucaryotic systems. Hum Genet . 1980; 54 289-302
- 53 Switzer III C R, Merril C R, Shifrin S. A highly sensitive silver stain for detecting proteins and peptides in polyacrylamide gels. Anal Biochem . 1979; 98 231-237
- 54 Goldman D, Merril C R, Ebert M H. Two-dimensional gel electrophoresis of cerebrospinal fluid proteins. Clin Chem . 1980; 26 1317-1322
- 55 Sutherland L, Davidson J, Jacobs H T. Nuclear expression of mitochondrial genes implicated in human encephalomyopathies. Biochem Soc Trans . 1994; 22 413S
- 56 Nagley P, Farrell L B, Gearing D P, Nero D, Meltzer S, Devenish R J. Assembly of functional proton-translocating ATPase complex in yeast mitochondria with cytoplasmically synthesized subunit 8, a polypeptide normally encoded within the organelle. Proc Natl Acad Sci U S A . 1988; 85 2091-2095
- 57 Chinnery P F, Taylor R W, Diekert K, Lill R, Turnbull D M, Lightowlers R N. Peptide nucleic acid delivery to human mitochondria. Gene Ther . 1999; 6 1919-1928
- 58 Perez-Martinez X, Antaramian A, Vazquez-Acevedo M. Subunit II of cytochrome c oxidase in Chlamydomonad algae is a heterodimer encoded by two independent nuclear genes. J Biol Chem . 2001; 276 11302-11309
- 59 Corral-Debrinski M, Belgareh N, Blugeon C, Claros M G, Doye V, Jacq C. Overexpression of yeast karyopherin Pse1p/Kap121p stimulates the mitochondrial import of hydrophobic proteins in vivo. Mol Microbiol . 1999; 31 1499-1511
- 60 Claros M G, Vincens P. Computational method to predict mitochondrially imported proteins and their targeting sequences. Eur J Biochem . 1996; 241 770-786
- 61 Nakai K, Kanehisa M. A knowledge base for predicting protein localization sites in eukaryotic cells. Genomics . 1992; 14 897-911
- 62 Isaya G, Kalousek F, Fenton W A, Rosenberg L E. Cleavage of precursors by the mitochondrial processing peptidase requires a compatible mature protein or an intermediate octapeptide. J Cell Biol . 1991; 113 65-76
- 63 Owen IV R, Lewin A P, Peel A. Recombinant adeno-associated virus vector-based gene transfer for defects in oxidative metabolism. Human Gene Therapy . 2000; 11 2067-2078
- 64 Barrell B G, Bankier A T, Drouin J. A different genetic code in human mitochondria. Nature . 1979; 282 189-194
- 65 Barrell B G, Anderson S, Bankier A T. Different pattern of codon recognition by mammalian mitochondrial tRNAs. Proc Natl Acad Sci U S A . 1980; 77 3164-3166
- 66 Anderson S, Bankier A T, Barrell B G. Sequence and organization of the human mitochondrial genome. Nature . 1981; 290 457-465
- 67 Mezey E, Chandross K J, Harta G, Maki R A, McKercher S R. Turning blood into brain: cells bearing neuronal antigens generated in vivo from bone marrow. Science . 2000; 290 1779-1782
- 68 Wivel N A, Wilson J M. Methods of gene delivery. Hematol Oncol Clin North Am . 1998; 12 483-501
- 69 Costantini L C, Bakowska J C, Breakefield X O, Isacson O. Gene therapy in the CNS. Gene Ther . 2000; 7 93-109
- 70 Derby M L, Sena-Esteves M, Breakefield X O, Corey D P. Gene transfer into the mammalian inner ear using HSV-1 and vaccinia virus vectors. Hear Res . 1999; 134 1-8
- 71 King M P, Attardi G. Human cells lacking mtDNA: repopulation with exogenous mitochondria by complementation. Science . 1989; 246 500-503