Subscribe to RSS
DOI: 10.1055/s-2001-18539
Indirect evidence that intestinal bile salt absorption in rats and hamsters is under positive feedback control
Die intestinale Gallensäurenabsorption wird bei Ratte und Hamster durch einen positiven Feedback kontrolliertPublication History
19.4.2001
6.8.2001
Publication Date:
21 November 2001 (online)

Summary: Bile salts are reabsorbed from the intestine by active and passive transport mechanisms with great efficacy. Conflicting data do not allow to judge for certainty whether bile salt absorption is under negative or positive feedback control. To address this issue, we analyzed bile salt absorption in vivo along the entire intestinal tract of rats and hamsters that received intraduodenal bile salt infusions for 54 h following interruption of the enterohepatic circulation. Taurocholate absorption in rats was complete, even when unphysiologically high concentrations of taurocholate were given. The combined infusion of taurocholate together with potent inhibitors of bile salt synthesis such as deoxycholate, taurodeoxycholate or taurochenodeoxycholate, failed to inhibit bile salt absorption. In the hamster, taurochenodeoxycholate and taurocholate absorption was complete and could not be inhibited when given in supraphysiological concentrations. Finally, taurocholate absorption was not impaired when deoxycholic acid was infused. These results provide indirect evidence that bile salt absorption is under positive feedback control regulated by luminal bile salt concentrations.
Die intestinale Gallensäurenabsorption wird bei Ratte und Hamster durch einen positiven Feedback kontrolliert
Gallensäuren werden durch aktive und passive Transportmechanismen nahezu komplett aus dem Darm absorbiert. Ob die intestinale Gallensäurenabsorption einem negativen oder positiven Feedbackmechanismus unterliegt, ist derzeit unklar. Wir analysierten deshalb die intestinale Gallensäurenabsorption in vivo von Ratten und Hamster, die nach Unterbrechung der enterohepatischen Zirkulation eine intraduodenale Gallensäureninfusion für 54 h erhielten. Taurocholat wurde von Ratten vollständig absorbiert, sogar wenn unphysiologisch hohe Taurocholatkonzentrationen infundiert wurden. Die Taurocholatabsorption konnte durch die kombinierte Infusion von Taurocholat mit potenten Hemmern der Gallensäurensynthese wie Deoxycholat, Taurodeoxycholat oder Taurochenodeoxycholat nicht gehemmt werden. Beim Hamster war die Absorption von Taurochenodeoxycholat und Taurocholat vollständig und konnte auch durch unphysiologisch hohe Konzentrationen nicht gehemmt werden. Schließlich wurde die Taurocholatabsorption auch nicht durch die Infusion von Deoxycholsäure beeinträchtigt. Diese Ergebnisse liefern indirekte Hinweise, dass die intestinale Gallensäurenabsorption einer positiven Feedbackkontrolle, reguliert durch die luminale Gallensäurenkonzentration, unterliegt.
Key words
Bile Salts - Intestinal Absorption - Enterohepatic Circulation - Bile Fistula
Schlüsselwörter
Gallensalze - intestinale Absorption - enterohepatische Zirkulation - Gallefistel
References
- 1 Fuchs M, Stange E F. Metabolism of bile acids. Bircher J, Benhamou JP,
McIntyre N, Rizzetto M, Rodes J Oxford Textbook of Clinical
Hepatology Oxford University
Press 1999 Oxford: 223-256
MissingFormLabel
- 2
Dietschy J M.
Mechanisms for the intestinal absorption of bile
acids.
J Lipid
Res.
1968;
9
297-309
MissingFormLabel
- 3
Krag E, Phillips S F.
Active and passive bile acid absorption in man.
J
Clin
Invest.
1974;
53
1686-1694
MissingFormLabel
- 4
Amelsberg A, Schteingart C D, Ton-Nu H T, Hofmann A F.
Carrier-mediated jejunal absorption of conjugated bile acids
in the guinea
pig.
Gastroenterology.
1996;
110
1098-1106
MissingFormLabel
- 5
Walters H C, Craddock A L, Fusegawa H, Willingham M C, Dawson P A.
Expression, transport properties, and chromosomal location of
organic anion transporter subtype 3.
Am J Physiol Gastrointest Liver
Physiol.
2000;
279
G1188-G1200
MissingFormLabel
- 6
Wong M H, Oelkers P, Craddock A L, Dawson P A.
Expression cloning and characterization of the hamster ileal
sodium-dependent bile acid transporter.
J Biol
Chem.
1994;
269
1340-1347
MissingFormLabel
- 7
Craddock A L, Love M W, Daniel R W. et al .
Expression and transport properties of the human ileal and
renal sodium-dependent bile acid transporter.
Am J
Physiol.
1998;
274
G157-G169
MissingFormLabel
- 8
Wong M H, Oelkers P, Dawson P A.
Identification of a mutation in the ileal sodium-dependent
bile acid transporter gene that abolishes transport activity.
J Biol
Chem.
1995;
270
27 228-27 234
MissingFormLabel
- 9
Stange E F, Scheibner J, Ditschuneit H.
Role of primary and secondary bile acids as feedback
inhibitors of bile acid synthesis in the rat in vivo.
J Clin
Invest.
1989;
84
173-180
MissingFormLabel
- 10
Scheibner J, Fuchs M, Schiemann M, Stange E F.
Deoxycholate and cholate modulate the source of cholesterol
substrate for bile acid synthesis in the
rat.
Hepatology.
1995;
21
529-538
MissingFormLabel
- 11
Scheibner J, Fuchs M, Hörmann E, Stange E F.
Complex feedback regulation of bile acid synthesis in the
hamster: The role of newly synthesized
cholesterol.
Hepatology.
1999;
30
230-237
MissingFormLabel
- 12
Fuchs M, Scheibner J, Hörmann E, Tauber G, Stange E F.
Enterohepatic circulation in hamsters with an extracorporeal
bile duct.
J Lipid
Res.
1992;
33
1383-1392
MissingFormLabel
- 13
Stange E F, Scheibner J, Lutz C, Ditschuneit H.
Feedback regulation of bile acid synthesis in the rat by
dietary vs. intravenous cholate or
taurocholate.
Hepatology.
1988;
8
879-886
MissingFormLabel
- 14
Vonk R J, van
Doorn A BD, Strubbe J H.
Bile secretion and bile composition in the freely moving,
unanaesthetized rat with a permanent biliary drainage: Influence of food intake
on bile flow.
Clin Sci Mol
Med.
1978;
55
253-259
MissingFormLabel
- 15
Kuipers F, Havinga R, Bosschieter H. et al .
Enterohepatic circulation in the
rat.
Gastroenterology.
1985;
88
403-411
MissingFormLabel
- 16
Weis E E, Barth C A.
The extracorporeal bile duct: A new model for determination
of bile flow and bile composition in the intact rat.
J Lipid
Res.
1978;
19
856-862
MissingFormLabel
- 17
Tietz P S, Thistle J L, Miller L J, LaRusso N F.
Development and validation of a method for measuring the
glycine and taurine conjugates of bile acids in bile by high-performance liquid
chromatography.
J
Chromatogr.
1984;
336
249-257
MissingFormLabel
- 18
Scheibner J, Fuchs M, Schiemann M. et al .
Bile acid synthesis from newly synthesized vs. performed
cholesterol precursor pools in the
rat.
Hepatology.
1993;
17
1095-1102
MissingFormLabel
- 19
Marcus S N, Schteingart C D, Marquez M L. et al .
Active absorption of conjugated bile acids in vivo. Kinetic
parameters and molecular specificity of the ileal transport system in the
rat.
Gastroenterology.
1991;
100
212-221
MissingFormLabel
- 20
Lillienau J, Crombie D L, Munoz J. et al .
Negative feedback regulation of the ileal bile acid transport
system in
rodents.
Gastroenterology.
1993;
104
38-46
MissingFormLabel
- 21 Lillienau J. Zonal negative feedback regulation of active ileal bile acid
transport in rodents. XIV. International Bile Acid Meeting, Falk
Symposium Nr. 93 Freiburg; Abstract
Booklet 1996: 42
MissingFormLabel
- 22
Sauer P, Stiehl A, Fitscher B A. et al .
Down-regulation of ileal bile acid absorption in bile-duct
ligated rats.
J
Hepatol.
2000;
33
2-8
MissingFormLabel
- 23
Higgins J V, Paul J M, Dumaswala R, Heubi J E.
Down-regulation of taurocholate transport by ileal BBM and
liver BLM in biliary-diverted rats.
Am J
Physiol.
1994;
267
G501-G507
MissingFormLabel
- 24
Arrese M, Trauner M, Sacchiero R J, Crossman M W, Shneider B L.
Neither intestinal sequestration of bile acids nor common
bile duct ligation modulate the expression and function of the rat ileal bile
acid
transporter.
Hepatology.
1998;
28
1081-1087
MissingFormLabel
- 25
Torchia E C, Cheema S K, Agellon L B.
Coordinate regulation of bile acid biosynthetic and recovery
pathways.
Biochem Biophys Res
Commun.
1996;
225
128-133
MissingFormLabel
- 26
Coppola C P, Gosche J R, Arrese M. et al .
Molecular analysis of the adaptive response of intestinal
bile acid transport after ileal resection in the
rat.
Gastroenterology.
1998;
115
1172-1178
MissingFormLabel
- 27
Stravitz R T, Sanyal A J, Pandak W M. et al .
Induction of sodium-dependent bile acid transporter messenger
RNA, protein, and activity in rat ileum by cholic
acid.
Gastroenterology.
1997;
113
1599-1608
MissingFormLabel
- 28
Dumaswala R, Berkowitz D, Setchell K DR, Heubi J E.
Effect of fasting on the enterohepatic circulation of bile
acids in rats.
Am J
Physiol.
1994;
267
G836-G842
MissingFormLabel
- 29
Cohen H, Bonorris G G, Marks J W, Schoenfield L J.
Effect of zanchol and chenic acid on bile acid pool size and
gallstones in hamsters.
Am J Med
Sci.
1982;
283
23-31
MissingFormLabel
- 30
Reynier M O, Montet J C, Gerolami A. et al .
Comparative effects of cholic, chenodeoxycholic, and
ursodeoxycholic acids on micellar solubilization and interstinal absorption
of
cholesterol.
J Lipid
Res.
1981;
22
467-473
MissingFormLabel
- 31
Mok H Y, Grundy S M.
Cholesterol and bile acid absorption during bile acid therapy
in obese subjects undergoing weight
reduction.
Gastroenterology.
1980;
78
62-67
MissingFormLabel
- 32
von
Bergmann K, Epple-Gutsfeld M, Leiss O.
Differences in the effects of chenodeoxycholic and
ursodeoxycholic acid on biliary lipid secretion and bile acid synthesis in
patients with
gallstones.
Gastroenterology.
1984;
87
136-143
MissingFormLabel
- 33
Dumaswala R, Berkowitz D, Heubi J E.
Adaptive response of the enterohepatic circulation of bile
acids to extrahepatic
cholestasis.
Hepatology.
1996;
23
623-629
MissingFormLabel
- 34
van Tilburg A JP, De
Rooij F WM, van
Blankenstein M, van den
Berg J WO, Bosman-Jacobs E P.
Na+-dependent bile acid transport in the ileum: The
balance between diarrhea and
constipation.
Gastroenterology.
1990;
98
25-32
MissingFormLabel
- 35
Glasser J E, Weiner I M, Lack L.
Comparative physiology of intestinal taurocholate
transport.
Am J
Physiol.
1965;
208
359-362
MissingFormLabel
- 36
Sklan D, Budowski P, Hurwitz S.
Site of bile acid absorption in the
rat.
Lipids.
1976;
11
467-471
MissingFormLabel
- 37
Mekhjian H S, Phillips S F, Hofmann A F.
Colonic secretion of water and electrolytes induced by bile
acids: Perfusion studies in man.
J Clin
Invest.
1971;
50
1569-1577
MissingFormLabel
- 38
Imray C HE, Radley S, Davis A. et al .
Fecal unconjugated bile acids in patients with colorectal
cancer or
polyps.
Gut.
1992;
33
1239-1245
MissingFormLabel
Address for correspondence ab 1.9.2001:
Michael Fuchs MD, PhD
Department of Medicine I
University of Ulm
Robert-Koch-Straße 8
89081 Ulm
Germany
Fax: +49/7 31/5 00-2 43 02
Email: michael.fuchs@medizin.uni-ulm.de