References
<A NAME="RD23601ST-1A">1a</A>
Donaldson WA.
Tetrahedron
2001,
57:
8589 ; and references cited therein
<A NAME="RD23601ST-1B">1b</A>
Esposito A.
Taddei M.
J. Org. Chem.
2000,
65:
9245
For leading references, see:
<A NAME="RD23601ST-2A">2a</A>
Salaün J.
Rappoport Z. In The Chemistry of the Cyclopropyl Group, Rearrangements Involving the Cyclopropyl Group
Wiley;
New York:
1987.
p.809
<A NAME="RD23601ST-2B">2b</A>
Houben-Weyl: Methods of Organic Chemistry, Carbocyclic Three and Four-membered Ring Systems
Vol. E.17:
de Meijere A.
Thieme Verlag;
Stuttgart:
1997.
<A NAME="RD23601ST-2C">2c</A>
Sylvestre I.
Olivier J.
Salaün J.
Tetrahedron Lett.
2001,
42:
4991 ; and references cited therein
<A NAME="RD23601ST-2D">2d</A>
Shaffer CL.
Morton MD.
Hanzlik RP.
J. Am. Chem. Soc.
2001,
123:
8502
<A NAME="RD23601ST-2E">2e</A>
Kulinkovich OG.
de Meijere A.
Chem. Rev.
2000,
100:
2789 ; and references cited therein
For asymmetric synthesis of 1,2-disubstituted cyclopropanols in enantiomerically pure
form from boronic esters, see:
<A NAME="RD23601ST-3A">3a</A>
Pietruszka J.
Widenmeyer M.
Synlett
1997,
977
<A NAME="RD23601ST-3B">3b</A>
Fontani P.
Carboni B.
Vaultier M.
Maas G.
Synthesis
1991,
605
<A NAME="RD23601ST-3C">3c</A>
Imai T.
Mineta H.
Nishida S.
J. Org. Chem.
1990,
55:
4986
<A NAME="RD23601ST-3D">3d</A>
Pietruszka J.
Witt A.
J. Chem. Soc. Perkin Trans. 1
2000,
4293
<A NAME="RD23601ST-3E">3e</A>
Luithle JEA.
Pietruszka J.
Witt A.
J. Chem. Soc., Chem. Commun.
1998,
2651
<A NAME="RD23601ST-3F">3f</A>
Taylor RE.
Schmidt MJ.
Yuan H.
Org. Lett.
2000,
2:
601 ; and references cited therein
<A NAME="RD23601ST-3G">3g</A>
Baird MS.
Huber AM.
Clegg W.
Tetrahedron
2001,
57:
9849
<A NAME="RD23601ST-4">4</A>
McGaffin G.
Grimm B.
Heinecke U.
Michaelsen H.
de Meijere A.
Walsh R.
Eur. J. Org. Chem.
2001,
3559 ; and references cited therein
<A NAME="RD23601ST-5A">5a</A>
Morikawa T.
Saski H.
Hanai R.
Shibuya A.
Taguchi T.
Muray E.
J. Org. Chem.
1994,
59:
97
<A NAME="RD23601ST-5B">5b</A>
Evans DA.
Burch JD.
Org. Lett.
2001,
3:
503
<A NAME="RD23601ST-5C">5c</A>
Alvarez-Larena A.
Piniella JF.
Branchadell V.
Ortuño RM.
J. Org. Chem.
2000,
65:
388
<A NAME="RD23601ST-5D">5d</A>
Ma D.
Cao Y.
Yang Y.
Cheng D.
Org. Lett.
1999,
1:
285
<A NAME="RD23601ST-6A">6a</A>
Urones JG.
Marcos IS.
Garrido NM.
Basabe P.
Bastida AJ.
San Feliciano SG.
Díez Martín D.
Goodman JM.
Synlett
1998,
1361
<A NAME="RD23601ST-6B">6b</A>
Díez Martín D.
San Feliciano SG.
Marcos IS.
Basabe P.
Garrido NM.
Urones JG.
Synthesis
2001,
1069
<A NAME="RD23601ST-7A">7a</A>
Urones JG.
Díez Martín D.
Marcos IS.
Garrido NM.
Basabe P.
San Feliciano SG.
Coca R.
Synlett
1998,
41:
1364
<A NAME="RD23601ST-7B">7b</A>
Díez Martín D.
Templo Beneitez M.
Marcos IS.
Garrido NM.
Basabe P.
Urones JG.
Synlett
2001,
655
<A NAME="RD23601ST-8A">8a</A>
Carreño MC.
Cid MB.
Carcia Ruano JL.
Santos M.
Tetrahedron Lett.
1998,
39:
1405
<A NAME="RD23601ST-8B">8b</A>
Hardinger SA.
Fuchs PL.
J. Org. Chem.
1987,
52:
2739
<A NAME="RD23601ST-8C">8c</A>
Padwa A.
Murphree SS.
Ni Z.
Watterson SH.
J. Org. Chem.
1996,
61:
3829
<A NAME="RD23601ST-8D">8d</A>
Cuvigny T.
Herve du Penhoat C.
Julia M.
Tetrahedron
1986,
42:
5321
<A NAME="RD23601ST-8E">8e</A>
Backvall J.-E.
Ericsson AM.
Juntunen S.
Nájera C.
Yus M.
J. Org. Chem.
1993,
58:
5221
<A NAME="RD23601ST-9">9</A>
Kociénski PJ.
Protecting Groups
Thieme Verlag;
Stuttgart/New York:
1994.
<A NAME="RD23601ST-10">10</A>
Experimental Details for the Transformation of 7: LDA was generated by the addition of n-butyllithium 1.6 M (0.25 mL, 0.38 mmol) to a solution of diisopropylamine (54 µL,
0.38 mmol) in THF (1.0 mL) at -78 ºC. After 5 minutes, the mixture was allowed to
warm to room temperature, and then recooled to -78 ºC. Compound 7 (80 mg, 0.18 mmol) was then added to the reaction flask via cannula as a solution in THF (1 mL). The reaction mixture was left to stir for one hour at
-78 ºC under argon before the addition of saturated ammonium chloride solution (1
mL). The product was extracted into ethyl acetate three times. The organic extracts
were combined, washed with water and saturated brine, then dried over anhydrous sodium
sulfate, filtered and removed the solvent in vacuo. The mixture was purified by flash
silica column chromatography (hexane-ethyl acetate, 9:1) isolating 53 mg, 94% of a
mixture 7:3 of cyclopropanes 8 and 9. Selected data for compound 8: [α]20
D = +17.2º, (c = 0.79, CHCl3), 1H NMR (200 MHz, CDCl3) δ 0.93 (1 H, m, Hβ-3), 1.04 (1 H, q, J = 6.4 Hz, Hα-3), 1.24 (1 H, m, H-2), 1.38-1.90 (6 H, m, H-2’, H-3’, H-4’), 3.57 (1 H, m, HA-5’), 3.71 (1 H, m, H-1), 3.86 (1 H, m, HB-5’), 4.68 (1 H, m, H-1’), 6.22 and 6.30 (1 H, d, J = 15 Hz, CH=CH-SO2Ph), 6.54 (1 H, dd, J = 15.0 and 10.0 Hz, CH=CH-SO2Ph), 7.56 (3 H, m, -SO2Ph), 7.86 (2 H, m, -SO2Ph). 13C NMR (50 MHz, CDCl3) δ 16.0 and 17.1 (C-3), 19.3 and 19.4 (C-3’), 21.5 and 22.2 (C-2), 25.5 (C-4’), 29.9
and 30.6 (C-2’), 59.0 (C-1), 62.6 and 62.8 (C-5’), 99.1 (C-1’), 127.5 and 128.2 (CH=CH-SO2Ph), 127.7 (Corto, -SO2Ph), 129.5 (Cmeta, -SO2Ph), 133.4 (Cpara, -SO2Ph), 141.1 (Cipso, -SO2Ph), 147.9 and 148.0 (CH=CH-SO2Ph). EIMS m/z (rel. int.): 309 (M+ + 1, 3), 279(5), 195(5), 167(10), 125,(10), 85(100). HRMS C16H20O4S requires 308,1082, found, 308,1082. IR (liquid film, cm-1): 3063, 2942, 1620, 1447, 1308, 1146, 1086. Selected data for compound 9: [α]20
D = -41.7º, (c = 0.87, CHCl3), 1H NMR (200 MHz, CDCl3) δ 0.91 (2 H, m, H-3), 1.08-1.89 (7 H, m, H-2’, H-3’, H-4’, H-2), 3.57 (1 H, m, HA-5’), 3.76-4.02 (2 H, m, HB-5’, H-1), 4.42 and 4.75 (1 H, m, H-1’), 6.42 (1 H, m, CH -SO2Ph), 6.80 (1 H, m, CH=CH -SO2Ph), 7.56 (3 H, m, -SO2Ph), 7.88 (2 H, m, -SO2Ph), 13C NMR (50 MHz, CDCl3) δ 15.8 and 17.0 (C-3), 19.3 and 19.5 (C-3’), 20.5 and 21.1 (C-2), 25.6 (C-4’), 30.3
and 30.6
(C-2’), 57.0 (C-1), 62.6 and 62.8 (C-5’), 99.3 (C-1’) 127.7 (Corto, -SO2Ph), 128.6 (CH -SO2Ph), 129.3 (Cmeta, -SO2Ph), 133.2 (Cpara, -SO2Ph), 141.4 (Cipso, -SO2Ph), 146.8 and 147.4 (CH=CH -SO2Ph). EIMS m/z (rel. int.): 308 (M+, 3), 224(5), 195(8), 125(15), 85(100). HRMS C16H20O4S requires 308,1082, found 308,1092. IR (film, cm-1): 2945, 1618, 1447, 1317, 1144.
<A NAME="RD23601ST-11">11</A>
Militzer H.-C.
Schömenauer S.
Otte C.
Puls C.
Hain J.
Bräse S.
de Meijere A.
Synthesis
1993,
998 ; and references cited therein
<A NAME="RD23601ST-12A">12a</A> For general review see:
Wong HNC.
Hon M.-Y.
Tse C.-W.
Yip Y.-C.
Tanko J.
Hudlicky T.
Chem. Rev.
1989,
89:
165
<A NAME="RD23601ST-12B">12b</A>
Park S.-B.
Cha JK.
Org. Lett.
2000,
2:
147 ; and references cited therein
<A NAME="RD23601ST-13">13</A>
Selected data for compound 13: [α]20
D =-17.2º, (c = 0.40, CHCl3), 1H NMR (400 MHz, CDCl3) δ 0.37 (1 H, q, J = 6.0 Hz, Hα-3), 0.76 (1 H, ddd, J = 9.2, 5.6 and 2.8 Hz, Hβ-3), 0.95 (1 H, m, H-2), 1.56-1.73 (3 H, m, CH2-CH2 -SO2Ph, -OH), 3.18 (2 H, m, -CH2 -SO2Ph), 3.25 (1 H, dt, J = 6.0, 2.8, 2.8 Hz, H-1), 7.58 (2 H, m, -SO2Ph), 7.65 (1 H, m, -SO2Ph), 7.91 (2 H, m, -SO2Ph), 13C NMR (50 MHz, CDCl3) δ 14.9 (C-3), 19.6 (C-2), 25.2 (CH2-CH2 -SO2Ph), 52.8 (C-1), 56.0 (CH2 -SO2Ph), 128.2 (Corto, -SO2Ph), 129.5 (Cmeta, -SO2Ph), 133.9 (Cpara, -SO2Ph), 139.5 (Cipso, -SO2Ph). EIMS m/z (rel. int.): 226 (M+, 5), 184(10), 143(65), 125(30), 84(85), 77(100). HRMS C11H14O3S requires 226.0664, found 226.0669. IR (liquid film, cm-1): 3200-3600, 2926, 1447, 1304, 1142, 1086, 689. Selected data for compound 14: [α]20
D = -8.5º, (c = 0.46, CHCl3), 1H NMR (400 MHz, CDCl3) δ 0.21 (1 H, m, Hα-3), 0.72 (1 H, m, Hβ-3), 1.20 (1 H, m, H-2), 1.90 (2 H, m, CH2-CH2 -SO2Ph), 3.25 (2 H, m, CH2 -SO2Ph), 3.53 (1 H, dt, J = 6.4, 6.4 and 3.2 Hz, H-1), 7.63 (3 H, m, -SO2Ph), 7.92 (2 H, m, -SO2Ph). 13C NMR (100 MHz, CDCl3) δ 13.0 (C-3), 16.5 (C-2), 20.4 (CH2-CH2 -SO2Ph), 49.6 (C-1), 56.4 (CH2 -SO2Ph), 127.9 (Corto, -SO2Ph), 129.2 (Cmeta, -SO2Ph), 133.6 (Cpara, -SO2Ph), 139.7 (Cipso, -SO2Ph). EIMS m/z (rel. int.): 226 (M+, 13), 184(12), 143(70), 125(30), 77(100). HRMS C11H14O3S requires 226.0664, found 226.0684. IR (liquid film, cm-1): 3200-3600, 3063, 2926, 2855, 1447, 1304, 1144, 1086.