Subscribe to RSS
DOI: 10.1055/s-2002-19759
Short and Versatile Two-Carbon Ring Expansion Reactions by Thermo-Isomerization: Novel Straightforward Synthesis of (±)-Muscone, Nor- and Homomuscones, and Further Macrocyclic Ketones
Publication History
Publication Date:
02 February 2007 (online)

Abstract
Thermo-isomerization of 1-vinyl substituted medium- and large-ring cycloalkanol derivatives in a flow reactor system at temperatures of 600 °C to about 650 °C leads directly to the ring-expanded macrocyclic ketones. Alkyl substituents at the vinylic moiety are transferred locospecifically to the ring-expanded ketone as corresponding α-, and β-substituents, respectively. This novel thermal 1,3-C shift reaction therefore provides a new access to short syntheses of many alkyl-substituted macrocyclic ketone derivatives [e.g. (±)-muscone and analogues] in a systematic manner.
Key words
ring expansions - macrocyclic ketones - dynamic gas phase thermo-isomerization - two- carbon ring insertion reactions - (±)-muscone syntheses
- 1 
             
            Nagel M.Hansen H.-J.Fráter G. Synlett 2002, 2✗5
- 4a 
             
            Kaiser R.Lamparsky D. Helv. Chim. Acta 1978, 61: 2671
- 4b 
             
            Müller E.Bauer M. Liebigs Ann. Chem. 1962, 654: 92
- 4c 
             
            Saunier YM.Danion-Bougot R.Danion D.Carrié R. J. Chem. Res. (S) 1978, 436
- 4d 
             
            McMurry JE.Miller DD. J. Am. Chem. Soc. 1983, 105: 1660
- 4e 
             
            Satoh T.Itoh N.Gengyo K.Takada S.Asakawa N.Yamani Y.Yamakawa K. Tetrahedron 1994, 50: 11839
- 4f 
             
            Clyne DS.Weiler L. Tetrahedron 1999, 55: 13659
- Isolated from the so-called Galbanum oleo-gum-resin of Ferula galbaniflua and Ferula rubicaulis: See ref. 4a and references therein. Macrolide 8a is described as distinctly musky, and 8b as woody, balsamic and slightly musky. For the synthesis of the two different smelling enantiomers of 8b, see:
- 5a 
             
            Kraft P.Tochtermann W. Liebigs Ann. Org. Bioorg. Chem. 1995, 1409
- 5b 
             
            Kraft P.Tochtermann W. Liebigs Ann. Org. Bioorg. Chem. 1994, 1161
- 5c 
             
            Noda Y.Kashin H. Heterocycles 1998, 48: 5
- 5d 
             
            Bestmann HJ.Kellermann W. Synthesis 1994, 1257
- For further syntheses of 8a and 8b:
- 6a  
            See ref. [4e] 
- 6b 
             
            Hinkamp L.Schäfer HJ.Wippich B.Luftmann H. Liebigs Ann. Chem. 1992, 559
- 6c 
             
            Donaldson WA.Taylor BS. Tetrahedron Lett. 1985, 26: 4163
- 6d 
             
            Sims RJ.Tischler SA.Weiler L. Tetrahedron Lett. 1983, 24: 253
- 6e 
             
            Wassermann HH.Gambale RJ.Pulwer MJ. Tetrahedron 1981, 37: 4059
- 6f 
             
            Voss G.Gerlach H. Helv. Chim. Acta 1983, 66: 2294
- 7 
             
            Taguchi H.Yamamoto H.Nozaki H. Tetrahedron Lett. 1976, 2617
- Selected characteristic spectroscopic data of
- 8a  
            3a: 1H NMR (300 MHz, CDCl3): 5.94 and 5.74 [br s, H2-C(1)], 1.86 [br s, Me-C(2)], 0.87 [t-type m, H3C(ω)]. 13C NMR (75 MHz, CDCl3): 202.3 [s, C(3)], 144.6 [s, C(2)], 124.1 [t, C(1)], 17.7 [q, Me-C(2)], 13.5 [q, C(ω)]. Reference Ris Wihthout Link
- 8b  
            5a: 1H NMR (300 MHz, CDCl3): 2.52 [t-type m, 2 H, H2-C(13)], 1.68-1.63 (m, 2 H), 1.54-1.49 (m, 2 H), 1.33-1.15 (m, 16 H), 1.12 [s, 6 H, Me2-C(2)]. 13C NMR (75 MHz, CDCl3): 216.0 (s), 47.84 (s), 40.83, 35.68, 26.96, 26.69, 26.63, 25.45, 25.26 (7 t), 24.70 (q, 2), 24.56, 24.48, 22.27, 21.86 (4 t). Reference Ris Wihthout Link
- 9 
             
            Casanova J.Waegell B. Bull. Soc. Chim. Fr. 1971, 1289
- For examples of analogous one-carbon insertion reactions by a semipinacol-type [1,2]C shift induced by electrophiles (Br+, Cl+), see (Scheme 5):
- 10a 
             
            Julia S.Julia M.Linarès H.Blondel J.-C. Bull. Soc. Chim. Fr. 1962, 1952
- 10b 
             
            Johnson CR.Cheer CJ.Goldsmith DJ. J. Org. Chem. 1964, 29: 3320
- 10c 
             
            Kartashov VR.Pushkarev VP.Tishkov KN.Bodrikov IV. J. Org. Chem. USSR (Engl Transl.) 1971, 7: 1638
- 10d 
             
            Bodrikov IV.Kartashov VR.Temnikova TI. J. Org. Chem. USSR (Engl Transl.) 1968, 4: 1286
- 10e 
             
            Bouget H. Bull. Soc. Chim. Fr. 1965, 2089
- Examples for the synthesis of geminal α,α-dialkylated cyclic ketones by one-carbon expansion reactions:
- 11a 
             
            Krief A.Laboureur JL. Tetrahedron Lett. 1987, 28: 1549
- 11b 
             
            Krief A.Laboureur JL. J. Chem. Soc., Chem. Commun. 1986, 702
-  See also: (c)  
            Hesse M. Ring Enlargement in Organic Chemistry VCH; Weinheim, Germany: 1991. Chap. 2. p.5-37 ; and references therein
- 12 For surface supported reactions on aluminium oxide see:  
            Posner GH. Angew. Chem. 1978. 90: p.527Reference Ris Wihthout Link
- For leading references see:
- 13a 
             
            Hesse M. Ring Enlargement in Organic Chemistry VCH; Weinheim, Germany: 1991.
- 13b 
             
            Williams AS. Synthesis 1999, 1707
- 13c 
             
            Fráter G.Bajgrowicz JA.Kraft P. Tetrahedron 1998, 54: 7633
- 13d 
             
            Fráter G.Lamparsky D. In Perfumes: Art, Science and TechnologyMüller PM.Lamparsky D. Elsevier; London, New York: 1991. Chap. 20. p.533-555
- 13e 
             
            Ohloff G. Riechstoffe und Geruchssinn. Die molekulare Welt der Düfte Springer; Berlin: 1990. Chap. 9. p.195-219
- 13f 
             
            Mookherjee BD.Wilson RA. In Fragrance Chemistry: The Science of the Sense of SmellTheimer ET. Academic Press; New York: 1982. Chap. 12. p.433-494
- 13g 
             
            Körber A.Bauer K. In Fragrance and Flavor SubstancesCroteau R. D & PS; Pattensen, Germany: 1980. Chap. 14. p.155-166
- Syntheses of muscone (7c):
- 14a  
            For leading references cf. ref. [13] 
- 14b 
             
            Munro C.Palmer K. Perfum. Flavour. 2000, 25 : May/June 1-4; and references therein
- 14c 
             
            Alexakis A.Benheim C.Fournioux X.Heuvel A.v. d. Levêque J.-M.March S.Rosset S. Synlett 1999, 11: 1811
- 14d 
             
            Kamat VP.Hagiware H.Suzuki T.Ando M. J. Chem. Soc., Perkin Trans. 1 1998, 2253
- 14e 
             
            Nicolaou KC.Pator J.Winssinger N.Murphy F. J. Am. Chem. Soc. 1998, 120: 5132
- 14f 
             
            Takahashi T.Machida K.Kido Y.Nagashima K.Ebata S.Doi T. Chem. Lett. 1997, 1291 ; and references therein
- 14g 
             
            Ballini R.Marcantoni E.Petrini M. Liebigs Ann. 1995, 1381 ; and references therein
- 14h 
             
            Porter NA.Lacher B.Chang VH.Magnin DR. J. Am. Chem. Soc. 1989, 111: 8309
- 14i 
             
            Bienz S.Hesse M. Helv. Chim. Acta 1988, 71: 1704 ; and references therein
- 14j 
             
            Bienz S.Hesse M. Helv. Chim. Acta 1987, 70: 2146
- 14k 
             
            Karpf M.Dreiding AS. Helv. Chim. Acta 1975, 58: 2409
- Syntheses of 3-methylcyclohexadecanone (7d):
- 15a 
             
            Weiper-Idelmann A.a. d. Kamen M.Schäfer HJ.Gockeln M. Acta Chem. Scand. 1998, 52: 672
- 15b 
             
            Mash EA.Gregg TM.Baron JA. J. Org. Chem. 1997, 62: 8513
- 15c 
             
            Tanaka K.Matsui J.Somemiya K.Suzuki H. Synlett 1994, 351
- 15d 
             
            Mookherjee BD.Trenkle RW.Patel R. J. Org. Chem. 1971, 36: 3266
- Syntheses of 3-methylcyclotetradecanone (7b):
- 16a 
             
            Yoshii E.Kimoto S. Chem. Pharm. Bull. 1969, 17: 629
- 16b  
            See ref. [14j] 
- 16c  
            See ref. [14k] 
- Syntheses of 3-methylcyclotridecanone (7a):
- 17a 
             
            Schulte-Elte KH.Hauser A.Ohloff G. Helv. Chim. Acta 1979, 62: 2673
- 17b  
            cf. ref. [14k] 
- 17c 
             
            Hiyama T.Mishima T.Kitatani K.Nozaki H. Tetrahedron Lett. 1974, 3297
- For a survey:
- 19a 
             
            Hesse M. Ring Enlargement in Organic Chemistry VCH; Weinheim, Germany: 1991. Chap. 2. p.5-34 ; and references therein
- 19b 
             
            Smith PAS.Baer DR. Org. React. 1960, 11: 157-188
- 19c 
             
            Kirchhof W.Stumpf W.Franke W. Liebigs Ann. Chem. 1965, 681: 32
- 19d 
             
            Drotloff H.Rotter H.Emeis D.Moeller M. J. Am. Chem. Soc. 1987, 7797
- 20a 
             
            Evans DA.Carroll GL.Truesdale LK. J. Org. Chem. 1974, 39: 914
- 20b 
             
            Vincek WC.Aldrich CS.Borchardt RT.Grunewald GL. J. Med. Chem. 1981, 24: 7
- 20c 
             
            Choudary BM.Narender N.Bhuma V. Synth. Commun. 1995, 25: 2829
- 20d  
            Modification of the work-up procedure: To dissolve all the aminoalcohol during the washing procedure, the white granular precipitate was digested in a glass filter with hot t-BuOMe several times and finally with one portion of hot THF. 
- 21a 
             
            Gabel G. Bull. Soc. Chim. Fr. 1934, 1006
- 21b 
             
            Kerwin JF.Ullyot GE.Fuson RC.Zirkle CL. J. Am. Chem. Soc. 1947, 69: 2961
- 21c 
             
            Bellau B.Conway TT.Doyle TW.Morris L.Verbestel W. Can. J. Chem. 1975, 53: 237
- 21d 
             
            Kitani H.Kuroda T.Moriguchi A.Ao H.Hirayama F. Bioorg. Med. Chem. Lett. 1997, 7: 515
- 21e 
             
            Reddy LR.Reddy MA.Bhanumathi N.Rao KR. Synlett 2000, 339
- 21f 
             
            Tiffeneau M.Weill P.Tchoubar B. C. R. Acad. Sci. 1937, 205: 54
- 21g 
             
            Tchoubar B. Bull. Soc. Chim. Fr. 1949, 164
- 21h 
             
            Clark RD.Caroon JM.Repke DB.Strosberg AM.Bitter SM. J. Med. Chem. 1983, 26: 855
- 21i 
             
            Caroon JM.Clark RD.Kluge AF.Lee C.-H.Strosberg AM. J. Med. Chem. 1983, 26: 1426
- 21j 
             
            Chen Y.-L.Chan C.-K.Chang N.-C. J. Chin. Chem. Soc. (Taipei) 1998, 45: 649
- 22a 
             
            Corey EJ.Chaykovsky M. J. Am. Chem. Soc. 1965, 87: 1353
- 22b 
             
            Shibuya H.Tsujii S.Yamamoto Y.Miura H.Kitagawa I. Chem. Pharm. Bull. 1984, 32: 3417
- 22c 
             
            Bouda H.Borredon ME.Delmas M.Gaset A. Synth. Commun. 1987, 17: 503
- 22d 
             
            Blake AJ.Danks JP.Harrison A.Parsons S.Schooler P. J. Chem. Soc., Dalton Trans. 1998, 2335
- 22e 
             
            Ng JS. Synth. Comm. 1990, 20: 1193 ; and references therein
- 23 
             
            Toda F.Kanemoto K. Heterocycles 1997, 46: 185
- The mixture of the (E/Z)-isomers 17, and 21, respectively, was found already earlier to be difficult to separate, cf. ref.14k For 21 see also:
- 25a 
             
            Stoll M.Rouvé A. Helv. Chim. Acta 1947, 30: 2019
- 25b 
             
            Ito Y.Saegusa T. J. Org. Chem. 1977, 42: 2326
- 25c  
            Ref. [17a] 
- 25d 
             
            Flieri HG.Scholz D.Stütz A. Monatsh. Chem. 1979, 110: 245
- 25e 
             
            Torii S.Inokuchi T.Mizuguchi K.Yamazaki M. J. Org.Chem. 1979, 44: 2303
- 25f  
            See ref. [19c] 
- 25g 
             
            Tsuji J.Yamada T.Kaito M.Mandai T. Bull. Chem. Soc. Jpn. 1980, 53: 1417
- 25h 
             
            Rautenstrauch V.Snowden RL.Linder SM. Helv. Chim. Acta 1990, 73: 896
- 25i  
            See ref. [14b] 
- 26a 
             
            Marson Ch.Walker AJ.Pickering J.Hobson AD. J. Org. Chem. 1993, 58: 5944
- 26b 
             
            Adam W.Richter MJ. Synthesis 1994, 176
- 26c 
             
            Brandsma L.Verkruijsse H. Preparative Polar Organometallic Chemistry 1 Springer; Berlin/Heidelberg: 1987. p.50-51
- 27 
             
            McMurry JE.Miller DD. J. Am. Chem. Soc. 1983, 105: 1660
- 28 
             
            Satoh T.Masayuki I.Yamakawa K. Chem. Lett. 1987, 1949
- 29a 
             
            Thies RW.Daruwala KP. J. Org. Chem. 1987, 52: 3798 ; and references therein
- 29b 
             
            Wilson SR.Misra RN.Georgiadis GM. J. Org. Chem. 1980, 45: 2460
References
For a description of the thermo-izomerization procedure and the experimental setup, see ref. [1] and references therein.
3All mentioned cycloalkanols were synthesized by addition of the corresponding commercially available vinylic halides (normally the bromide) to the ketone by using a Grignard reaction. The yields could be improved significantly by pre-complexation of the ketone with CeCl3, according to the analogous procedure described in ref. 1 for the simple 1-vinylcycloalkanols. The propynyl substituted alcohol derivatives 16 and 20 were obtained in a similar manner by addition of propynyl magnesium bromide to the parent ketone. The 1-cyclohexen-1-yl-cyclododecanol 28 was obtained via addition of the lithio cyclohexenyl intermediate according to ref. [27]
18Selected characteristic data of enones 8: 1H NMR (300 MHz, CDCl3): (E)-8a: 6.84 [dq, J = 15.5, 7 Hz, H-C(2)], 6.12 [dq, J = 15.5, 1.7 Hz, H-C(3)], 1.87 (dd, J = 7, 1.5 Hz). (Z)-8a: 6.19 [m, 2 H, H-C(2,3)], 2.11 (d, J = 7 Hz). 13C NMR (75 MHz, CDCl3): 200.4 [s, C(4)], (E)-8a: 141.9 [d, C(2)], 131.9 [d, C(3)], 18.0 [q, C(1)]. (Z)-8a: 142.2 [d, C(2)], 127.6 [d, C(3)], 15.9 [q, C(1)].
24Cyclododecanone (12, 60 g, 0.33 mol) was melted by keeping it at 65-70 °C, then t-BuOH (15 mL) and trimethyl sulfoxonium iodide (117 g, 0.52 mol, 1.6 mol equiv.) were added with stirring. The resulting pulpy suspension was kept at 70 °C and potassium t-butoxide (56 g, 0.5 mol) were added in several portions. After an induction period of several minutes the insoluble precipitates slowly dissolved, due to the formation of equimolar amounts of DMSO during the spiroepoxide formation. After stirring for 1.5 h, powdered KOH (2 g) was added to the mixture. The course of the reaction was then followed by GC (conversion up to 95%). When further addition of KOH resulted in no additional epoxide formation, the mixture was allowed to cool to r.t. and water (100 mL) was added slowly with stirring. The mixture was diluted with t-BuOMe and then washed several times with water and brine. The organic layer was dried on MgSO4 and the solvent removed. After bulb-to-bulb distillation, oxirane 15 was obtained as a colorless oil (61 g, containing 5-10% 12) and was used for the transformation into 14 without further purification.
 
    