Abstract
Treatment of (2,3-epoxy-4-pentenyloxy)trialkylsilane with radical precursors such
as triphenylgermane and α-halo carbonyl compounds in the presence of Et3 B yields α,β-unsaturated aldehydes. The reaction involves β-scission of a secondary
alkoxy radical that releases a siloxymethyl radical.
Key words
radical reactions - α,β-unsaturated aldehydes - carbon-carbon bond cleavage - vinyloxirane
- germanium compounds
References
<A NAME="RY00802ST-1A">1a </A>
Tanaka S.
Nakamura T.
Yorimitsu H.
Shinokubo H.
Oshima K.
Synlett
2001,
1278
<A NAME="RY00802ST-1B">1b </A>
Ichinose Y.
Oshima K.
Utimoto K.
Chem. Lett.
1988,
1437
<A NAME="RY00802ST-2">2 </A>
Nubbemeyer U.
Synthesis
1993,
1120
<A NAME="RY00802ST-3A">3a </A>
Nozaki K.
Oshima K.
Utimoto K.
J. Am. Chem. Soc.
1987,
109:
2547
<A NAME="RY00802ST-3B">3b </A>
Oshima K.
Utimoto K.
J. Syn. Org. Chem., Jpn.
1989,
47:
40
<A NAME="RY00802ST-3C">3c </A>
Yorimitsu H.
Oshima K. In
Radicals in Organic Synthesis
Renaud P.
Sibi MP.
Wiley-VCH;
Weinheim:
2001.
Chap. 1.2.
<A NAME="RY00802ST-3D">3d </A>
Ollivier C.
Renaud P.
Chem. Rev.
2001,
101:
3415
<A NAME="RY00802ST-4">4 </A>
Experimental Procedure : Triphenylgermane (90 mg, 0.30 mmol) and t -butyldimethyl(2,3-epoxy-4-pentenyloxy)silane (1a , 0.10 g, 0.45 mmol) were placed in a 50 mL reaction flask. The mixture was set under
argon with a toy ballon, and benzene (3 mL) was introduced. A hexane solution of triethylborane
(1.0 M, 0.20 mL, 0.20 mmol) was added to the reaction flask with stirring. The whole
mixture was heated at reflux for 3.5 h. TLC analysis indicated the completion of the
reaction. (In the case of the other radical precursors, when the reaction did not
finish, an additional triethylborane was added and stirring continued at reflux.)
Evaporation of the solvent and following silica gel column purication with hexane/AcOEt
= 10/1 as an eluent provided 4-triphenylgermyl-2-butenal (75 mg, 0.20 mmol, 65%).
(
E
)-4-Triphenylgermyl-2-butenal (4) : IR(neat): 2924, 2855, 1682, 1462, 1377, 1092, 741, 700 cm-1 ; 1 H NMR (CDCl3 ): δ = 2.79 (d, J = 9.0 Hz, 2 H), 6.00 (dd, J = 15.3, 8.1 Hz, 1 H), 6.93 (dt, J = 15.0, 9.0 Hz, 1 H), 7.36-7.47 (m, 15 H), 9.30 (d, J = 8.4 Hz, 1 H); 13 C NMR (CDCl3 ): δ = 22.60, 128.58, 128.65, 129.65, 132.44, 134.80, 157.20, 193.43. Calcd for C22 H20 GeO: 374.0730. Found: 374.0735.
Tri(2-furyl)germane was prepared according to the literature:
<A NAME="RY00802ST-5A">5a </A>
Nakamura T.
Yorimitsu H.
Shinokubo H.
Oshima K.
Synlett
1999,
1415
<A NAME="RY00802ST-5B">5b </A>
Nakamura T.
Yorimitsu H.
Shinokubo H.
Oshima K.
Bull. Chem. Soc. Jpn.
2001,
74:
747 ; excellent reactivity of tri(2-furyl)germane in radical addition was reported
<A NAME="RY00802ST-5C">5c </A>
Tanaka S.
Nakamura T.
Yorimitsu H.
Shinokubo H.
Oshima K.
Org. Lett.
2000,
2:
1911
<A NAME="RY00802ST-5D">5d </A>
Nakamura T.
Tanaka S.
Yorimitsu H.
Shinokubo H.
Oshima K.
C. R. Acad. Sci. II Chim.
2001,
4:
461
Acid-induced olefination starting from β-alkoxy silane was reported:
<A NAME="RY00802ST-6A">6a </A>
Hudrlik PF.
Peterson D.
Rona RJ.
J. Org. Chem.
1975,
40:
2263
<A NAME="RY00802ST-6B">6b </A>
Hudrlik PF.
Kulkarni AK.
J. Am. Chem. Soc.
1981,
103:
6251 ; and references therein
<A NAME="RY00802ST-7">7 </A>
Acid-induced olefination starting from β-alkoxy germane was reported. See ref.
[5c ]
and ref.
[5d ]
.
Release of acyl groups was observed in the literatures. The fragmentation is less
efficient and the yields of aldehydes were low (10-30%) compared with the siloxymethyl
radical fragmentation, see:
<A NAME="RY00802ST-8A">8a </A>
Robertson J.
Burrows J.
Tetrahedron Lett.
1994,
35:
3777
<A NAME="RY00802ST-8B">8b </A>
Murphy JA.
Patterson CW.
Wooster NF.
Tetrahedron Lett.
1988,
29:
955
<A NAME="RY00802ST-8C">8c </A>
Murphy JA.
Patterson CW.
Wooster NF.
J. Chem. Soc., Chem. Commun.
1988,
29:
294
For review, see:
<A NAME="RY00802ST-9A">9a </A>
Li JJ.
Tetrahedron
2001,
57:
1
<A NAME="RY00802ST-9B">9b </A>
Dowd P.
Zhang W.
Chem. Rev.
1993,
93:
2091
As far as radical addition to vinyloxirane as an initial step is concerned, synthesis
of alcohol was reported:
<A NAME="RY00802ST-10A">10a </A>
Kim S.
Lee S.
Koh JS.
J. Am. Chem. Soc.
1991,
113:
5106
<A NAME="RY00802ST-10B">10b </A>
Dang H.-S.
Roberts BP.
Tetrahedron Lett.
1992,
33:
6169
<A NAME="RY00802ST-10C">10c </A>
Dang H.-S.
Roberts BP.
J. Chem. Soc., Perkin Trans. 1
1993,
891
<A NAME="RY00802ST-10D">10d </A>
Rawal VH.
Krishnamurthy V.
Tetrahedron Lett.
1992,
33:
3439
<A NAME="RY00802ST-10E">10e </A>
Suzuki A.
Miyaura N.
Itoh M.
Brown HC.
Holland GW.
Negishi E.
J. Am. Chem. Soc.
1971,
93:
2792
<A NAME="RY00802ST-10F">10f </A> For synthesis of ether involving radical cyclization of a oxygen-centered radical
see:
Feldman KS.
Fisher TE.
Tetrahedron
1989,
45:
2969
<A NAME="RY00802ST-10G">10g </A> For fragmentation to yield ketone see:
Kim S.
Lee S.
Tetrahedron Lett.
1991,
32:
6575