References
<A NAME="RG05902ST-1">1</A> Part 76 in the series Cyclopropyl Building Blocks for Organic Synthesis, Part
75 see:
Nötzel MW.
Labahn T.
Rauch K.
de Meijere A.
Org. Lett.
2002,
4:
839
<A NAME="RG05902ST-2">2</A> Review:
Salaün J.
Top. Curr. Chem.
2000,
207:
1
<A NAME="RG05902ST-3">3</A>
Kulinkovich OG.
Sviridov SV.
Vasilewski DA.
Pritytskaya TS.
J. Org. Chem. USSR (Engl. Transl.)
1989,
25:
2027 ; Zh. Org. Khim. 1989, 25, 2244
<A NAME="RG05902ST-4">4</A> Review:
Kulinkovich OG.
de Meijere A.
Chem. Rev.
2000,
100:
2789
<A NAME="RG05902ST-5">5</A>
Chaplinski V.
de Meijere A.
Angew. Chem., Int. Ed. Engl.
1996,
35:
413 ; Angew. Chem. 1996, 108, 491
<A NAME="RG05902ST-6">6</A>
Chaplinski V.
Winsel H.
Kordes M.
de Meijere A.
Synlett
1997,
111
<A NAME="RG05902ST-7">7</A>
Kordes M.
Winsel H.
de Meijere A.
Eur. J. Org. Chem.
2000,
3235
<A NAME="RG05902ST-8">8</A>
Kordes M.
Dissertation
Universität;
Göttingen:
1999.
<A NAME="RG05902ST-9">9</A>
Handbook of Grignard Reagents, Silverman G. S., Rakita P. E.
Dekker;
New York:
1996.
<A NAME="RG05902ST-10">10</A> Review:
Knochel P.
Singer RD.
Chem. Rev.
1993,
93:
2117
<A NAME="RG05902ST-11">11</A> The functionally substituted dialkylzinc reagents were prepared from the corresponding
alkyl iodides and excess diethylzinc according to a published protocol. Cf.:
Rozema MJ.
Sidduri AR.
Knochel P.
J. Org. Chem.
1992,
57:
1956
<A NAME="RG05902ST-12">12</A>
Winsel H.
Diplomarbeit
Universität;
Göttingen:
1997.
<A NAME="RG05902ST-13">13</A>
The added isopropoxide most probably helps to form a zincate which can more rapidly
transfer one of its ethyl groups to titanium. Wiedemann, S. Part of the forthcoming
Dissertation, Universität Göttingen, 2002.
<A NAME="RG05902ST-14">14</A>
Wiedemann, S.; Frank, D.; Winsel, H.; de Meijere, A. unpublished results.
<A NAME="RG05902ST-15">15</A> It has been shown that i-PrMgBr reacts faster with RZnX than with Ti(i-PrO)4. Cf.:
Averbuj C.
Kaftanov J.
Marek I.
Synlett
1999,
1939
<A NAME="RG05902ST-16">16</A>
Reetz MT.
Westermann J.
Steinbach R.
Wenderoth B.
Peter R.
Ostarek R.
Maus S.
Chem. Ber.
1985,
118:
1421
<A NAME="RG05902ST-17">17</A>
All new compounds were fully characterized by spectroscopic methods (IR, 1H and 13C NMR, MS) and elemental analyses. General Procedure B (GPB): To a solution of Cl2Ti(O-i-Pr)2 (1043 mg, 4.0 mmol) in THF (5 mL) kept at -30 °C, was added 5.3 mL of a 1.65 M solution
of methyllithium (8.8 mmol) in hexane. Then 1.5 mL of a 3 M solution of methylmagnesium
chloride (4.5 mmol) in THF was added, and the mixture was stirred for
1 h at this temperature. After that the previously prepared solution of the organozinc
compound in THF and the N,N-dialkylcarboxamide (4 mmol) were added, the mixture was slowly warmed up to r.t.
until gas evolution ceased, and stirred for an additional 8 h. The reaction was quenched
by addition of 2 mL of H2O, and stirring of the mixture continued until the color of the suspension had turned
yellow. The mixture was filtered, and the solid was washed with diethyl ether (2 ×
10 mL). The combined organic phases were dried over Na2SO4. The crude products were purified by column chromatography. For example (2-Dibenzylaminocyclopropyl)acetic Acid tert
-Butyl Ester (17aa): From tert-butyl 4-iodobutyrate and N,N-dibenzylformamide, following GPB as above, two diastereomeric products were isolated
by column chromatography (70 g of silica gel, diethyl ether/pentane 1:10).
Fraction I (Rf = 0.83): 300 mg (21%) of cis-(2-dibenzyl-aminocyclopropyl)acetic acid tert-butyl ester (cis-17aa) as a colorless oil. IR(film): ν = 3063, 2977, 2928, 1733, 1494, 1454, 1367, 1152,
1028, 749, 698 cm-1. 1H NMR (250 MHz, CDCl3): δ = 0.13 (ddd, 3
J = 4.5, 3
J = 4.9, 2
J = 5.1 Hz, 1 H, 3′-H), 0.73 (ddd, 2
J = 5.1, 3
J = 6.9, 3
J = 8.6 Hz, 1 H, 3′-H), 1.14 (ddddd, 3
J = 4.9, 3
J = 6.8, 3
J = 7.0, 3
J = 7.2, 3
J = 8.6 Hz, 1 H, 1′-H), 1.34 [s, 9 H, C(CH3)3], 1.96 (ddd, 3
J = 4.5, 3
J = 6.9, 3
J = 7.0 Hz, 1 H, 2′-H), 2.41 (dd, 3
J = 6.8, 2
J = 16.4 Hz, 1 H, 2-H), 2.48 (dd, 3
J = 7.2, 2
J = 16.4 Hz, 1 H, 2-H), 3.50 (d, 2
J = 13.8 Hz, 2 H, CHHPh), 3.69 (d, 2
J = 13.8 Hz, 2 H, CHHPh), 7.35-7.21 (m, 10 H, Ph-C). 13C NMR (62.9 MHz, CDCl3, DEPT): δ = 12.1 (-, C-3′), 15.1 (+, C-1′), 28.0 [+,OC(CH3)3], 33.9 (-, C-2), 40.1 (+, C-2′), 57.5 (-, NCH2), 80.0 [Cquat, OC(CH3)3], 126.8 (+, Ph-C), 128.0 (+, Ph-C), 129.4 (+, Ph-C), 138.1 (Cquat, Ph-C), 173.5(Cquat, C=O). MS (EI, 70 eV): m/z (%) = 351(6) [M+], 278(9), 260(4), 236(9), 204(100), 181(2), 158(5),106(4), 91(81). Anal. Calcd for
C23H29NO2: C, 78.60; H, 8.32; N, 3.99. Found: C, 78.44; H, 8.34; N, 4.04.
Fraction II (Rf = 0.58): 542 mg (39%) of trans-(2-dibenzyl-aminocyclopropyl)acetic acid tert-butyl ester (trans-17aa) as a colorless oil. IR(film): ν = 3063, 3028, 2978, 2929, 1732, 1602, 1494, 1454,
1392, 1367, 1257, 1154, 1076, 1029, 955, 750, 699, 620 cm-1. 1H NMR (250 MHz, CDCl3): δ = 0.34 (ddd, 2
J = 5.3, 3
J = 5.3, 3
J = 6.7 Hz, 1 H, 3′-H), 0.61 (ddd, 3
J = 3.3, 2
J = 5.3, 3
J = 8.0 Hz, 1 H, 3′-H), 1.04 (ddddd, 3
J = 3.4, 3
J = 5.3, 3
J = 7.2, 3
J = 7.2, 3
J = 8.0 Hz, 1 H, 1′-H), 1.42 [s, 9 H, C(CH3)3], 1.68 (ddd, 3
J = 3.3, 3
J = 3.4, 3
J = 6.7 Hz, 1 H, 2′-H), 2.02 (dd, 3
J = 7.2, 2
J = 14.6 Hz, 1 H, 2-H), 2.07 (dd, 3
J = 7.2, 2
J = 14.6 Hz, 1 H, 2-H), 3.64 (d, 2
J = 13.5 Hz, 2 H, CHHPh), 3.71 (d, 2
J = 13.5 Hz, 2 H, CHHPh), 7.35-7.22 (m, 10 H, Ph-C). 13C NMR (62.9 MHz, CDCl3, DEPT): δ = 14.2 (-, C-3′), 17.6 (+, C-1′), 28.1 [+, OC(CH3)3], 38.6 (-, C-2), 43.1 (+, C-2′), 57.7 (-, NCH2), 80.2 [Cquat, OC(CH3)3], 126.8 (+, Ph-C), 128.0 (+, Ph-C), 129.4 (+, Ph-C), 138.6 (Cquat, Ph-C), 172.2 (Cquat, C=O). MS (EI, 70 eV): m/z (%) = 351(6) [M+], 294(6), 260(5), 250(14), 236(8), 204(100), 186(3), 158(6), 131(4), 106(6), 91(81).
Anal. Calcd for C23H29NO2: C, 78.60; H, 8.32; N, 3.99. Found: C, 78.81; H, 8.10; N, 3.96.
<A NAME="RG05902ST-18">18</A> Diastereomerically pure (E)-1-(2-chloroethyl)-2-ethyl-cyclopropanols can be obtained from β-chloropropionates
and unsubstituted butylmagnesium bromide. Cf.:
Sylvestre I.
Ollivier J.
Salaün J.
Tetrahedron Lett.
2001,
42:
4991