References
<A NAME="RD10002ST-1">1</A>
Carreño MC.
Chem. Rev.
1995,
95:
1717
<A NAME="RD10002ST-2A">2a</A>
Pezet F.
Aït-Haddou H.
Daran J.-C.
Sasaki I.
Balavoine GGA.
Chem. Commun.
2002,
510
<A NAME="RD10002ST-2B">2b</A>
Hiroi K.
Suzuki Y.
Abe I.
Kawagishi R.
Tetrahedron
2000,
56:
4701
<A NAME="RD10002ST-2C">2c</A>
Tokunoh R.
Sodeoka M.
Aoe K.-I.
Shibasaki M.
Tetrahedron Lett.
1995,
36:
8035
Examples of biologically active sulfoxides:
<A NAME="RD10002ST-3A">3a</A> RP 73163:
Pitchen P.
Chem. Ind. (London)
1994,
16:
636
<A NAME="RD10002ST-3B">3b</A> Pantoprazole:
Tanaka M.
Yamazaki H.
Hakusui H.
Nakamichi N.
Sekino H.
Chirality
1997,
9:
17
<A NAME="RD10002ST-3C">3c</A> Ustiloxine:
Hutton CA.
White JM.
Tetrahedron Lett.
1997,
38:
1643
<A NAME="RD10002ST-3D">3d</A> OPC-29030:
Morita S.
Matsubara J.
Otsubo K.
Kitano K.
Ohtani T.
Kawano Y.
Uchida M.
Tetrahedron: Asymmetry
1997,
8:
3707
<A NAME="RD10002ST-3E">3e</A> Methionine Sulfoxide:
Holland HL.
Brown FM.
Tetrahedron: Asymmetry
1998,
9:
535
<A NAME="RD10002ST-3F">3f</A> Omeprazole:
von Unge S.
Langer V.
Sjölin L.
Tetrahedron: Asymmetry
1997,
8:
1967
<A NAME="RD10002ST-3G">3g</A> Esomeprazole:
Cotton H.
Elebring T.
Larsson M.
Li L.
Sörensen H.
von Unge S.
Tetrahedron: Asymmetry
2000,
11:
3819
<A NAME="RD10002ST-3H">3h</A> ZD3638:
Moseley JD.
Moss WO.
Welham MJ.
Org. Process Res. Dev.
2001,
5:
491
<A NAME="RD10002ST-4A">4a</A>
Kagan H. In
Catalytic Asymmetric Synthesis
Ojima I.
Wiley-VCH;
New York:
2000.
Chap. 6c.
<A NAME="RD10002ST-4B">4b</A>
Kagan H. In
Asymmetric Oxidation reactions: Practical Approach in Chemistry
Katsuki T.
Oxford University press;
Oxford:
2001.
Chap. 4.1.
<A NAME="RD10002ST-5">5</A>
Pitchen P.
Duñach E.
Deshmukh MN.
Kagan HB.
J. Am. Chem. Soc.
1984,
106:
8188
<A NAME="RD10002ST-6">6</A>
Di Furia F.
Modena G.
Seraglia R.
Synthesis
1984,
325
<A NAME="RD10002ST-7A">7a</A>
Brunel J.-M.
Kagan HB.
Synlett
1996,
404
<A NAME="RD10002ST-7B">7b</A>
Brunel J.-M.
Kagan HB.
Bull. Soc. Chim. Fr.
1996,
133:
1109
<A NAME="RD10002ST-8A">8a</A>
Donnoli MI.
Superchi S.
Rosini C.
J. Org. Chem.
1998,
63:
9392
<A NAME="RD10002ST-8B">8b</A>
Bonchio M.
Licini G.
Di Furia F.
Mantovani S.
Modena G.
Nugent WA.
J. Org. Chem.
1999,
64:
1326
<A NAME="RD10002ST-8C">8c</A>
Martyn LJP.
Pandiaraju S.
Yudin AK.
J. Organomet. Chem.
2000,
603:
98
<A NAME="RD10002ST-8D">8d</A>
Kokubo C.
Katsuki T.
Tetrahedron
1996,
52:
13895
<A NAME="RD10002ST-8E">8e</A>
Peng Y.
Feng X.
Cui X.
Jiang Y.
Chan ASC.
Synth. Commun.
2001,
31:
2287
<A NAME="RD10002ST-8F">8f</A>
Alcón MJ.
Corma A.
Iglesias M.
Sánchez F.
J. Mol. Catal. A: Chem.
2002,
178:
253
<A NAME="RD10002ST-9A">9a</A>
Mekmouche Y.
Hummel H.
Ho RYN.
Que L.
Schünemann V.
Thomas F.
Trautwein AX.
Lebrun C.
Gorgy K.
Leprêtre J.-C.
Collomb M.-N.
Deronzier A.
Fontecave M.
Ménage S.
Chem.-Eur. J.
2002,
8:
1196
<A NAME="RD10002ST-9B">9b</A>
Saito B.
Katsuki T.
Tetrahedron Lett.
2001,
42:
3873
<A NAME="RD10002ST-9C">9c</A>
Brinksma J.
La Crois R.
Feringa BL.
Donnoli MI.
Rosini C.
Tetrahedron Lett.
2001,
42:
4049
<A NAME="RD10002ST-10A">10a</A>
Bolm C.
Bienewald F.
Angew. Chem., Int. Ed. Engl.
1995,
34:
2640
<A NAME="RD10002ST-10B">10b</A>
Vetter AH.
Berkessel A.
Tetrahedron Lett.
1998,
39:
1741
<A NAME="RD10002ST-10C">10c</A>
Skarzewski J.
Ostrycharz E.
Siedlecka R.
Tetrahedron: Asymmetry
1999,
10:
3457
<A NAME="RD10002ST-10D">10d</A>
Karpyshev NN.
Yakovleva OD.
Talsi EP.
Bryliakov KP.
Tolstikova OV.
Tolstikov AG.
J. Mol. Catal. A: Chem.
2000,
157:
91
<A NAME="RD10002ST-10E">10e</A>
Ohta C.
Shimizu H.
Kondo A.
Katsuki T.
Synlett
2002,
161
<A NAME="RD10002ST-11">11</A>
Green SD.
Monti C.
Jackson RFW.
Anson MS.
Macdonald SJF.
Chem. Commun.
2001,
2594
<A NAME="RD10002ST-12">12</A>
Bryliakov KP.
Karpyshev NN.
Fominsky SA.
Tolstikov AG.
Talsi EP.
J. Mol. Catal. A: Chem.
2001,
171:
73
<A NAME="RD10002ST-13">13</A>
Compound 5: 1H NMR (CDCl3, 250 MHz) δ = 10.30 (s, 1 H), 7.15 (m, 2 H), 6.08 (ddt, 1 H, J = 17.0, 10.5, 5.0 Hz), 5.52 (dd, 1 H, J = 17.0, 1.5 Hz), 5.33 (dd, 1 H, J = 10.5, 1.5 Hz), 4.46 (br. d, 2 H, J = 5.0 Hz), 3.98 (br. t, 2 H, J = 5.0 Hz), 2.46 (br. t, 2 H, J = 7.0 Hz), 1.85 (m, 4 H), 1.41 (s, 9 H); 13C NMR (CDCl3, 62 MHz) δ = 190.4, 179.2, 156.5, 154.8, 145.6, 132.7, 130.3, 122.5, 117.5, 108.3,
79.9, 67.7, 35.2, 33.5, 30.7 (3 C), 28.5, 21.4; MS (ES) m/z = 335 (M + H+), 279, 251, 233.
<A NAME="RD10002ST-14">14</A>
Hofsløkken NU.
Skattebøl L.
Acta Chem. Scand.
1999,
53:
258
<A NAME="RD10002ST-15">15</A>
Chiral amino acids failed to react with supported salicylaldehyde 6.
<A NAME="RD10002ST-16">16</A>
Typical procedure: Solid supported Schiff base 7 (6 µmol, 0.012 equiv) was weighed in an Alltech tube and the resin was swollen in
CH2Cl2 for 1 h. A 0.04 M solution of VO(acac)2 in CH2Cl2 (1 mL, 40 µmol) was added and the mixture was shaken for 1 h. The solution was filtered
and the resin washed with CH2Cl2 (5 × 2 mL) and transferred into a reaction test tube. A 0.5 M solution of thioanisole
(1 mL, 0.5 mmol, 1 equiv) and 1,2,3-trimethoxybenzene (0.1 mmol, 0.2 equiv, internal
standard) in CH2Cl2 was added, followed by 7% H2O2 in H2O (240 µL, 1.1 equiv). The reaction mixture was stirred for 16 h and analysed by chiral
HPLC (Chiralcel OD-H, 5% EtOH in heptane, 1 mL/min, 227 nm). Retention times: 4.2
min(thioanisole), 7.1 min (internal standard), 11.7 min (R-methyl-phenylsulfoxide), 13.1 min (S-methyl-phenylsulfoxide), 14.3 min (methyl-phenylsulfone).
<A NAME="RD10002ST-17A">17a</A>
Canali L.
Cowan E.
Deleuze H.
Gibson CL.
Sherrington DC.
J. Chem. Soc., Perkin Trans. 1
2000,
2055
<A NAME="RD10002ST-17B">17b</A>
Reger TS.
Janda KD.
J. Am. Chem. Soc.
2000,
122:
6929
<A NAME="RD10002ST-17C">17c</A>
Sigman MS.
Jacobsen EN.
J. Am. Chem. Soc.
1998,
120:
4901
<A NAME="RD10002ST-18">18</A>
4-Bromo-1-hydroxy-2-naphthaldehyde was prepared by bromination of 1-hydroxy-2-naphthaldehyde
with N-bromosuccinimide according to a literature procedure
[19]
and isolated in 60% yield. Spectroscopic data: 1H NMR (CDCl3, 250 MHz) δ = 12.60 (s, 1 H), 9.92 (s, 1 H), 8.49 (d, 1 H, J = 8.5 Hz), 8.19 (d, 1 H, J = 8.5 Hz), 7.80 (t, 1 H, J = 8.5 Hz), 7.80 (s, 1 H), 7.63 (t, 1 H, J = 8.5 Hz); 13C NMR (CDCl3, 62 MHz) δ = 195.2, 161.3, 135.5, 131.8, 129.4, 127.2, 126.9, 125.8, 124.8, 114.8,
112.1.
<A NAME="RD10002ST-19">19</A>
Boehlow TR.
Harburn JJ.
Spilling CD.
J. Org. Chem.
2001,
66:
3111
<A NAME="RD10002ST-20">20</A>
Compound 10: 1H NMR (CDCl3, 250 MHz) δ = 14.85 (br. s, 1 H), 8.10 (s, 1 H), 8.00 (d, 1 H, J = 2.0 Hz), 7.51 (d, 1 H, J = 2.0 Hz), 3.99 (dd, 1 H, J = 11.5, 2.5 Hz), 3.69 (dd, 1 H, J = 11.5, 9.5 Hz), 3.07 (dd, 1 H, J = 9.5, 2.5 Hz), 1.00 (s, 9 H); 13C NMR (CDCl3, 62 MHz) δ = 166.5, 164.6, 149.9, 141.0, 117.0, 92.6, 78.2, 75.9, 61.8, 32.9, 26.8
(3 C); MS (ES) m/z = 474 (M + H+).
<A NAME="RD10002ST-21">21</A>
Compound 11: 1H NMR (CDCl3, 250 MHz) δ = 13.57 (br. s, 1 H), 8.39 (d, 1 H, J = 8.0 Hz), 7.98 (d, 1 H, J = 8.0 Hz), 7.70 (m, 1 H), 7.67 (t, 1 H, J = 8.0 Hz), 7.49 (t, 1 H, J = 8.0 Hz), 7.01 (s, 1 H), 4.06 (dd, 1 H, J = 11.5, 3.0 Hz), 3.76 (br. t, 1 H, J = 10.5 Hz), 3.16 (m, 1 H), 1.07 (s, 9 H); 13C NMR (CDCl3, 62 MHz) δ = 177.1, 162.2, 135.9, 131.5, 130.7, 127.7, 126.1, 125.5, 109.4, 107.0,
75.2, 62.3, 33.5, 27.2 (3 C); MS (ES) m/z = 350 and 352 (M + H+).
<A NAME="RD10002ST-22">22</A>
Typical experimental procedure: To a 0.03 M solution of ligand in CH2Cl2 (0.25 mL, 7.5 µmol, 0.015 equiv) was added a 0.02 M solution of VO(acac)2 in CH2Cl2 (0.25 mL, 5 µmol, 0.01 equiv) and the resulting mixture was stirred at r.t. for 30
min. A 1 M solution of sulfide in CH2Cl2 (0.5 mL, 0.5 mmol, 1 equiv) was added and after 30 min stirring at r.t., the reaction
mixture was cooled down to 0 °C. After 15 min at 0 °C, 27% H2O2 in H2O (65 µL, 1.2 mmol, 1.2 equiv) was added dropwise. The mixture was stirred at 0 °C
for 16 h and the solvent evaporated. The crude residue was purified by column chromatography
(silica gel, EtOAc-cyclohexane).