References
<A NAME="RY05702ST-1">1</A>
Zuev PS.
Sheridan RS.
Tetrahedron
1995,
51:
11337
<A NAME="RY05702ST-2">2</A>
Skell PS.
Villaume JE.
Plonka JH.
Fagone FA.
J. Am. Chem. Soc.
1971,
93:
2699
<A NAME="RY05702ST-3A">3a</A>
Castro CE.
Kray WC.
J. Am. Chem. Soc.
1966,
88:
4447
<A NAME="RY05702ST-3B">3b</A> Mukaiyama T., Shiono M., Watanabe K., Onaka M.; Chem. Lett.; 1975, 711
<A NAME="RY05702ST-3C">3c</A> SmI2:
Concellón JM.
Bernad PL.
Pérez-Andrés JA.
Tetrahedron Lett.
1998,
39:
1409
<A NAME="RY05702ST-3D">3d</A> Mn:
Takai K.
Hikasa S.
Ichiguchi T.
Sumino N.
Synlett
1999,
1769
<A NAME="RY05702ST-3E">3e</A> SnF2:
Mukaiyama T.
Yamaguchi M.
Kato J.-I.
Chem. Lett.
1981,
1505
<A NAME="RY05702ST-4">4</A> For recent reviews of carbenoids, see:
Boche G.
Lohrenz JCW.
Chem. Rev.
2001,
101:
697
<A NAME="RY05702ST-5A">5a</A>
Takai K.
Nitta K.
Utimoto K.
J. Am. Chem. Soc.
1986,
108:
7408
<A NAME="RY05702ST-5B">5b</A>
Okazoe T.
Takai K.
Utimoto K.
J. Am. Chem. Soc.
1987,
109:
951
<A NAME="RY05702ST-5C">5c</A>
Takai K.
Kataoka Y.
Okazoe T.
Utimoto K.
Tetrahedron Lett.
1987,
28:
1443
<A NAME="RY05702ST-5D">5d</A>
Hodgson DM.
Tetrahedron Lett.
1992,
33:
5603
<A NAME="RY05702ST-5E">5e</A>
Takai K.
Shinomiya N.
Kaihara H.
Yoshida N.
Moriwake T.
Utimoto K.
Synlett
1995,
963
<A NAME="RY05702ST-5F">5f</A>
Baati R.
Barma DK.
Falck JR.
Mioskowski C.
J. Am. Chem. Soc.
2001,
123:
9196
<A NAME="RY05702ST-6">6</A> For further reduction of a zinc carbenoid to geminal dizinc compound, see:
Takai K.
Kakiuchi T.
Kataoka Y.
Utimoto K.
J. Org. Chem.
1994,
59:
2668
<A NAME="RY05702ST-7">7</A>
Baati R.
Valleix A.
Mioskowski C.
Barma DK.
Falck JR.
Org. Lett.
2000,
2:
485
<A NAME="RY05702ST-8">8</A>
Treatment of 1-dodecene with CBr4 or CI4 instead of CCl4 at 0 °C for 24 h gave less than 5% of the corresponding allene, and most of the alkene
was recovered.
<A NAME="RY05702ST-9">9</A> For one-pot but two step conversion of olefins to allenes, see:
Untch KG.
Martin DJ.
Castellucci NT.
J. Org. Chem.
1965,
30:
3572
<A NAME="RY05702ST-10">10</A>
When 5 equiv. of the alkenes 3, 5, and 7 were treated with 1 equiv of CCl4 and 4 equiv of CrCl2, the yields of allenes based on CCl4 were 75%, 68%, and 70%, respectively.
<A NAME="RY05702ST-11A">11a</A>
von E. Doering W.
Henderson WA.
J. Am. Chem. Soc.
1958,
80:
5274
<A NAME="RY05702ST-11B">11b</A>
Moss RA.
Gerstl R.
J. Org. Chem.
1967,
32:
2268
<A NAME="RY05702ST-11C">11c</A>
Moss RA.
Gerstl R.
Tetrahedron
1967,
23:
2549
<A NAME="RY05702ST-11D">11d</A>
Skell PS.
Garner AY.
J. Am. Chem. Soc.
1956,
78:
5430
<A NAME="RY05702ST-12">12</A> Due to the presence of a proton source, the trichloromethyl-chromium species
could be hydrolyzed to some extent, see:
ev
ík P.
Inorg. Chim. Acta
1979,
32:
L16
<A NAME="RY05702ST-13A">13a</A>
Nozaki H.
Aratani T.
Noyori R.
Tetrahedron
1967,
23:
3645
<A NAME="RY05702ST-13B">13b</A>
Shirafuji T.
Oshima K.
Yamamoto Y.
Nozaki H.
Bull. Chem. Soc. Jpn.
1971,
44:
3161
<A NAME="RY05702ST-13C">13c</A> Okude Y., Hiyama T., Nozaki H.; Tetrahedron Lett.; 1977, 3829
<A NAME="RY05702ST-14">14</A>
3-Phenylpropyl
trans
-2-Chlorocyclopropanecarboxylate (21, Equation 5): To a suspension of CrCl2 (0.98 g, 8.0 mmol) in THF (14 mL) was added a solution of 3-phenylpropyl acrylate
(20, 0.19 g, 1.0 mmol) in THF (2 mL) at 0 °C. Carbon tetrachloride (0.19 mL, 2.0 mmol)
was added to the suspension at 0 °C over several minutes, and the resulting mixture
was stirred at 0 °C for 24 h. The mixture was poured into a saturated NaF solution
(10 mL) and stirred at 25 °C for 2.5 h. This mixture was extracted with Et2O (3 × 10 mL), and the organic extracts were dried over anhydrous MgSO4 and concentrated. Purification by column chromatography on silica gel (hexane-EtOAc,
100:1) gave the carboxylate 21 (0.14 g, 0.59 mmol) in 59% yield as a colorless oil: IR(neat): 3064, 3027, 2957,
2926, 2858, 1728, 1454, 1399, 1371, 1268, 1209, 1176, 747, 700, 666 cm-1; 1H NMR (CDCl3): δ 1.32-1.37 (m, 1 H), 1.51-1.59 (m, 1 H), 1.94-2.03 (m, 3 H), 2.70 (t, J = 7.2 Hz, 2 H), 3.35-3.38 (m, 1 H), 4.11 (t, J = 6.4 Hz, 2 H), 7.18-7.33 (m, 5 H); 13C NMR (CDCl3): δ 18.4, 23.7, 30.0, 32.1, 33.3, 64.5, 126.0, 128.4, 128.5, 141.0, 171.5; MS m/z (%): 238 (M+, 0.5), 118(100), 117(56), 91(31), 77(7). HRMS m/z calcd for C13H15ClO2 (M+): 238.0761, found 238.0750.
<A NAME="RY05702ST-15A">15a</A>
Taylor KG.
Hobbs WE.
Tetrahedron Lett.
1968,
1221
<A NAME="RY05702ST-15B">15b</A>
Vu VA.
Marek I.
Polbornaud K.
Knochel P.
Angew. Chem. Int. Ed.
2002,
41:
351
<A NAME="RY05702ST-16">16</A>
Because chromium carbenoids shows both electrophilic
[3a]
and nucleophilic characters,
[5a]
the reactivity of the species generated by the reduction of CCl4 with CrCl2 was examined. When the reduction of carbon tetrachloride with chromium(II) (6 equiv)
in THF was conducted in the presence of 3-phenylpropanal (4 equiv), (Z)-2-chloroallylic alcohol 24 was obtained in 56% yield based on CCl4, stereoselectively (Equation 6). The product 24 was the 1:2 adduct of CCl4 and the aldehyde, and this new species acts as a chloromethane trianion equivalent.
[18]
Equation 6
<A NAME="RY05702ST-17">17</A> Quite recently, similar results were reported by Falck and Mioskowski, see:
Baati R.
Falck JR.
Mioskowski C.
Tetrahedron Lett.
2002,
43:
2179
Berma DK.
<A NAME="RY05702ST-18">18</A>
Takai K.
Kokumai R.
Nobunaka T.
Chem. Commun.
2001,
1128
<A NAME="RY05702ST-19">19</A>
Treatment of the allene 4 with the CCl4-CrCl2 reagent resulted in 91% recovery under the same reaction conditions as in Equation
2.