Subscribe to RSS
DOI: 10.1055/s-2002-34215
The Asymmetric Synthesis of d-Galactose via an Iterative syn-Glycolate Aldol Strategy
Publication History
Publication Date:
23 September 2002 (online)

Abstract
The asymmetric synthesis of d-galactose has been completed in eight steps and in >14% yield from simple starting materials via an iterative syn-glycolate aldol strategy.
Key Words
asymmetric synthesis - monosaccharides - iterative glycolate aldol reaction - d-galactose
- 1
Danishefsky SJ.DeNinno MP. Angew. Chem., Int. Ed. Engl. 1987, 26: 15 - 2a
Bednarski M.Danishefsky S. J. Am. Chem. Soc. 1983, 105: 6968 - 2b
Danishefsky SJ.Larson E.Springer JP. J. Am. Chem. Soc. 1985, 107: 1274 - 2c
Danishefsky SJ.Pearson WH.Segmuller BE. J. Am. Chem. Soc. 1985, 107: 1280 - 2d
Bednarski M.Danishefsky S. J. Am. Chem. Soc. 1986, 108: 7060 - 2e
Schaus SE.Brånalt J.Jacobsen EN. J. Org. Chem. 1998, 63: 403 - 3a
Harris JM.Keränen MD.Nguyen H.Young VG.O’Doherty GA. Carbohydr. Res. 2000, 328: 17 - 3b
Henderson I.Sharpless KB.Wong C.-H. J. Am. Chem. Soc. 1994, 116: 558 - 3c
Kobayashi S.Kawasuji T. Synlett 1993, 911 - For a review see:
- 4a
Gijsen HJM.Qiao L.Fitz W.Wong C.-H. Chem. Rev. 1996, 96: 443 - 4b
Hudlicky T.Pitzer KK.Stabile MR.Thorpe AJ.Whited GM. J. Org. Chem. 1996, 61: 4151 - 4c
Johnson CR.Golebiowski A.Steensma DH. J. Am. Chem. Soc. 1992, 114: 9414 - 5a
Takeuchi M.Tanguchi T.Ogasawara K. Chirality 2000, 338 - 5b
Marshall JA.Hinkle KW. J. Org. Chem. 1996, 61: 105 - 5c
Kobayashi S.Wakabayashi T.Yasuda M. J. Org. Chem. 1998, 63: 4868 - 5d
Evans DA.Ng HP. Tetrahedron Lett. 1993, 34: 2229 - 6a
Koo SY.Lee AWM.Masamune S.Reed LAIII.Sharpless KB.Walker FJ. Science 1983, 220: 949 - 6b
Koo SY.Lee AWM.Masamune S.Reed LA.Sharpless KB.Walker FJ. Tetrahedron 1990, 46: 245 - 7a
Golec JMC.Jones SD. Tetrahedron Lett. 1993, 50: 8159 - 7b
Evans DA.Miller SJ.Ennis MD.Ornstein PL. J. Org. Chem. 1992, 57: 1067 - For leading examples of iterative aldol approaches to polypropionate fragments on solid phase see:
- 8a
Paterson I.Donghi M.Gerlach K. Angew. Chem. Int. Ed. 2000, 39: 3315 - 8b
Reggelin M.Brenig V. Tetrahedron Lett. 1996, 38: 6851 - 8c For solution phase synthesis
see:
Paterson I.Scott JP. Tetrahedron Lett. 1997, 42: 7441 - 8d Also see:
Paterson I.Scott JP. J. Chem. Soc., Perkin Trans. 1. 1999, 1003 - 9a
Crimmins MT.Tabet EA. J. Am. Chem. Soc. 2000, 122: 5473 - 9b
Li Z.Wu R.Michalczyk R.Dunlap RB.Odom JD.Silks LAP. J. Am. Chem. Soc. 2000, 122: 386 - 9c
Hunziker D.Wu N.Kenoshita K.Cane DE.Khosla C. Tetrahedron Lett. 1999, 40: 635 - The reactivity of glycolate enolates have been extensively reported. For glycolate enolate alkylations see:
- 10a
Crimmins MT.Emmitte KA.Katz JD. Org. Lett. 2000, 2: 2165 - 10b
Burke SD.Quinn KJ.Chen VJ. J. Org. Chem. 1998, 63: 8626 - 10c For glycolate enolate additions
to acyclic ketimines see:
Bravo P.Fustero S.Guidetti M.Volonterio A.Zanda M. J. Org. Chem. 1999, 64: 8731 - For representative examples of other glycolate aldol reactions see:
- 11a
Roush WR.Pfeifer LA.Marron TG. J. Org. Chem. 1998, 63: 2064 - 11b
Kim KS.Hong SD. Tetrahedron Lett. 2000, 41: 5909 - 11c
Sasaki S.Hamada Y.Shioiri T. Tetrahedron Lett. 1999, 40: 3187 - 11d
Andrus MB.Soma Sekhar BBV.Turner TM.Meredith EL. Tetrahedron Lett. 2001, 42: 7197 - 12
Bull SD.Davies SG.Jones S.Sanganee HJ. J. Chem. Soc., Perkin Trans. 1 1999, 387 - 13a
Bach J.Bull SD.Davies SG.Nicholson RL.Sanganee HJ.Smith AD. Tetrahedron Lett. 1999, 40: 6677 - 13b
Bull SD.Davies SG.Nicholson RL.Sanganee HJ.Smith AD. Tetrahedron: Asymmetry 2000, 11: 3475 - For instance see:
- 14a
Evans DA.Bartroli J. Tetrahedron Lett. 1982, 23: 807 - 14b
Evans DA.Polniaszek RP.DeVries KM.Guinn DE.Mathre DJ. J. Am. Chem. Soc. 1991, 113: 7613 - 14c
Chakraborty TK.Suresh VR. Tetrahedron Lett. 1998, 39: 7775 - 14d
Brimble MA.Nairn MR.Park J. Org. Lett. 1999, 1: 1459 - 14e An alternative strategy
involving conversion to the Weinreb amide and subsequent reduction
has also been employed, see:
Evans DA.Miller SJ.Ennis MD. J. Org. Chem. 1993, 58: 471 - The reduction of N-acyl thiaoxazolidinones to aldehydes has previously been reported, see:
- 15a
Chakraborty TK.Jayaprakash S.Lazman P. Tetrahedron 2001, 57: 9461 - 15b
Izawa T.Mukaiyama T. Bull. Chem. Soc. Jpn. 1979, 52: 555 - 15c
Izawa T.Mukaiyama T. Chem. Lett. 1977, 1443 - 15d For an isolated example
of the direct Red-Al reduction of an N-acyl
oxazolidinone to an aldehyde see:
Meyers AI.Spohn RF.Linderman RJ. J. Org. Chem. 1985, 50: 3633 - 19a
Smith AB.Ott GR. J. Am. Chem. Soc. 1996, 118: 13095 - 19b
Smith AB.Chen SS.-Y.Nelson FC.Reichert RC.Salvatore BA. J. Am. Chem. Soc. 1995, 117: 12017
References
Experimental Procedure for Aldol Reactions: CF3SO3H (1.2 equiv) was added to BEt3 (1 M in hexanes, 1.2 equiv) at r.t. then warmed to 40 °C for 10 minutes before cooling to 0 °C and subsequent addition via cannula to a solution of N-acyl-oxazolidin-2-one (1 equiv) in CH2Cl2. After 10 minutes, i-Pr2NEt (1.4 equiv) was added and the reaction mixture stirred for a further 20 minutes before cooling to -78 °C and the addition of freshly distilled aldehyde (1.1 equiv). After 30 minutes the reaction mixture was warmed to 0 °C and stirred for a further hour before the addition of MeOH-H2O2 (v/v, 1:1). The reaction mixture was extracted with CH2Cl2, washed with brine, dried and concentrated in vacuo before purification by flash column chromatography.
17Experimental Procedure for DIBALH
Reduction: DIBALH (1 M in hexanes, 2 equiv) was added to a stirred
solution of N-acyl-oxazolidin-2-one (1
equiv) in anhydrous CH2Cl2 at
-78 °C.
After 30 minutes, the reaction mixture was quenched with saturated
aqueous NH4Cl solution and stirred for a further 20 minutes.
The resultant emulsion was filtered through Celite®, dried
and concentrated in vacuo before purification by flash column chromatography.
1H NMR data for tetrose 8; δH (400 MHz, CDCl3) 0.01, 0.04 [2 × 3 H, s, Si(CH3)2 t-Bu], 0.86 [9 H, s, SiC(CH 3 )3], 3.53 [1 H, dd, J = 9.8 Hz, 4.9, C(4)H A ], 3.61 [1 H, dd, J = 9.8 Hz, 5.6, C(4)H B ], 3.88 [1 H, dd, J = 4.5 Hz, 1.3, C(2)H], 4.16-4.19 [1 H, m, C(3)H], 4.48 [2 H, ABq, J = 12.2 Hz, OCH 2 Ph], 4.57 [1 H, AB, J = 12.0 Hz, C(2)OCH A HBPh], 4.77 [1 H, AB, J = 12.0 Hz, C(2)OCH A H BPh], 7.27-7.37 (10 H, m, PhH), 9.76 (1 H, d, J = 1.3 Hz, CHO).
201H NMR data for lactone 10; δH (400 MHz, CDCl3) 2.56 (1 H, d, J = 2.3 Hz, OH), 3.68-3.76 [2 H, m, C(6)H 2 OBn], 4.08-4.11 [1 H, m, C(3)H], 4.17 [1 H, t, J = 2.3 Hz, C(4)H], 4.32 [1 H, d, J = 9.7 Hz, C(2)H], 4.43-4.47 [1 H, m, C(5)H], 4.52 [2 H, ABq, J = 11.7 Hz, C(6)H2OCH 2 Ph], 4.62 [1 H, d, J = 11.2 Hz, C(4)OCH A HBPh], 4.72 [1 H, d, J = 11.2 Hz, C(2)OCH A HBPh], 4.85 [1 H, d, J = 11.2 Hz, C(4)OCHA H B Ph], 5.19 [1 H, d, J = 11.2 Hz, C(2)OCHA H B Ph], 7.21-7.43 (15 H, m, PhH).
21Commercially available from the Aldrich Chemical company.