Klinische Neurophysiologie 2002; 33(3): 137-143
DOI: 10.1055/s-2002-34834
Originalia
© Georg Thieme Verlag Stuttgart · New York

Veränderte Ca2+-abhängige Inaktivierung von spannungsabhängigen Kalziumkanälen bei humaner Epilepsie

Altered Ca2+-dependent Inactivation of Voltage-Dependent Ca2+ Channels in Human EpilepsyH.  Beck1 , C.  Elger1 , I.  Mody2
  • 1Klinik für Epileptologie, Medizinische Einrichtungen der Universität Bonn
  • 2Department of Neurology and Physiology, University of California at Los Angeles School of Medicine, Los Angeles, California
Further Information

Publication History

Publication Date:
17 October 2002 (online)

Zusammenfassung

Spannungsabhängige Ca2+-Kanäle sind eine der Haupteintrittsrouten, durch die Ca2+ während Aktionspotenzialen in neuronale Zellen eintreten kann und koppeln hierdurch Ca2+-Einstrom an neuronale Aktivität. Neurone können die Menge des Ca2+-Einstromes durch Expression eines großen Repertoires von Ca2+-Kanälen mit unterschiedlichen biophysikalischen Eigenschaften regulieren. Zusätzlich wird der Ca2+-Eintritt durch Ca2+-abhängige Inaktivierung von Ca2+-Kanälen begrenzt. Experimente in Epilepsietiermodellen sowie in reseziertem Hirngewebe von Epilepsiepatienten legen bisher nahe, dass in hippokampalen Körnerzellen die Dichte von Ca2+-Kanälen erhöht ist. Zusätzlich wurde eine zweite funktionell wichtige Veränderung identifiziert. Das Ca2+-bindende Protein Calbindin-D28k ist in Körnerzellen von Patienten mit läsionsassoziierter Epilepsie in normalen Mengen enthalten, während es bei Ammonshornsklerose nahezu völlig verloren geht. Der Verlust von Calbindin-D28k führt zu einer stark vermehrten Ca2+-abhängigen Inaktivierung spannungsabhängiger Ca2+-Kanäle. Die intrazelluläre Applikation von aufgereinigtem Calbindin-D28k verminderte Ca2+-abhängige Inaktivierung in diesen Zellen bis zu Werten, die von Patienten mit läsionsassoziierter Epilepsie und normalem Calbindin-D28k-Gehalt nicht unterscheidbar waren. Diese Experimente führen zu der ungewöhnlichen Hypothese, dass der Verlust von Calbindin-D28k den Ca2+-Einstrom in Neurone während längerer Depolarisationen durch erhöhte Ca2+-abhängige Inaktivierung vermindert. Dieser Mechanismus könnte neuroprotektiv sein und zum Überleben von Körnerzellen bei chronischer Epilepsie beitragen. Zusätzlich erlauben Messungen an humanen nativen Zellen grundsätzliche Aussagen über die biophysikalischen Eigenschaften und Modulation humaner Ionenleitfähigkeiten in situ.

Abstract

Voltage-dependent Ca2+ channels are one of the main routes of Ca2+ entry into neurons during action potentials, thus coupling neuronal activity to Ca2+ influx. For fine-tuning the Ca2+ entry through voltage-dependent Ca2+ channels, neurons can rely on a large repertoire of Ca2+ channel subunits and splice variants from which channels with different biophysical properties may be assembled. Furthermore, Ca2+ entry is limited by Ca2+-dependent inactivation of Ca2+ channels. So far, the data from epilepsy patients and experimental models of epilepsy suggest that, in hippocampal granule cells, Ca2+ current density is augmented. The underlying mechanisms for this change are not clear. As a second important functional change, the Ca2+-binding protein Calbindin-D28k is lost from dentate granule cells in epilepsy patients with hippocampal sclerosis. In contrast, patients with lesionassociated epilepsy retained normal Calbindin-D28k levels. A loss of Calbindin-D28k was accompanied by a markedly augmented Ca2+-dependent inactivation of voltage-dependent Ca2+ channels. Introducing purified Calbindin-D28k into granule cells restored Ca2+-dependent inactivation to levels observed in cells with normal Calbindin-D28k content obtained from patients with lesion-associated epilepsy. Thus, by limiting Ca2+ influx through an enhanced Ca2+-dependent inactivation of voltage-dependent Ca2+ channels during prolonged neuronal discharges, the loss of Calbindin-D28k may constitute a neuroprotective mechanism contributing to survival of dentate granule cells. In addition to such information relevant to the pathophysiology of epilepsy, recordings on human neurons allow to obtain information about the biophysical properties and modulation of human ion channels in native neurons.

Literatur

  • 1 Johnston D, Magee J C, Colbert C M, Cristie B R. Active properties of neuronal dendrites.  Annu Rev Neurosci. 1996;  19 165-186
  • 2 Kim D, Song I, Keum S, Lee T, Jeong M J, Kim S S, McEnery M W, Shin H S. Lack of the burst firing of thalamocortical relay neurons and resistance to absence seizures in mice lacking α1G T-type Ca2+ channels.  Neuron. 2001;  31 35-45
  • 3 Huguenard J R. Low-threshold calcium currents in central nervous system neurons.  Annu Rev Physiol. 1996;  58 329-348
  • 4 Miller R J. The control of neuronal Ca2+ homeostasis.  Prog Neurobiol. 1991;  37 255-285
  • 5 Ertel E A, Campbell K P, Harpold M M, Hofmann F, Mori Y, Perez-Reyes E, Schwartz A, Snutch T P, Tanabe T, Birnbaumer L, Tsien R W, Catterall W A. Nomenclature of voltage-gated calcium channels.  Neuron. 2000;  25 533-535
  • 6 Eckert R, Chad J E. Inactivation of calcium channels.  Trends in Neuroscience. 1984;  44 215-267
  • 7 Beck H, Steffens R, Heinemann U, Elger C E. Ca2+-dependent inactivation of high-threshold Ca2+ currents in hippocampal granule cells of patients with chronic temporal lobe epilepsy.  Journal of Neurophysiology. 1999;  82 946-954
  • 8 Sochivko D, Pereverzev A, Smyth N, Gissel C, Schneider T, Beck H. The Cav2.3 Ca2+ channel submit contributes to R-type Ca2+ currents in murine hippocampal and cortical neurons..  Journal of Physiology. 2002;  542 699-710
  • 9 Isom L L, De Jongh K S, Catterall W A. Auxiliary subunits of voltage-gated ion channels.  Neuron. 1994;  12 1183-1194
  • 10 Perez-Reyes E. Molecular characterization of a novel family of low voltage-activated, T-type, calcium channels.  Journal of Bioenergetics and Biomembranes. 1998;  30 313-318
  • 11 Huguenard J R, Prince D A. Intrathalamic rhythmicity studied in vitro: nominal t-current modulation causes robust antioscillatory effects.  Journal of Neuroscience. 1994;  14 5485-5502
  • 12 Huguenard J R, McCormick D A. Simulation of the currents involved in rhythmic oscillations in thalamic relay neurons.  Journal of Neurophysiology. 1992;  68 1373-1383
  • 13 Huguenard J R, Prince D A. A novel T-type current underlies prolonged Ca2+-dependent burst firing in GABAergic neurons of rat thalamic reticular nucleus.  Journal of Neuroscience. 1992;  12 3804-3817
  • 14 Qian J, Noebels J L. Presynaptic Ca2+ channels and neurotransmitter release at the terminal of a mouse cortical neuron.  Journal of Neuroscience. 2001;  21 3721-3728
  • 15 Fletcher C F, Lutz C M, O'Sullivan T N, Shaughnessy J D, Hawkes R, Frankel W N, Copeland N G, Jenkins N A. Absence epilepsy in tottering mutant mice is associated with calcium channel defects.  Cell. 1996;  87 607-617
  • 16 Burgess D L, Jones J M, Meisler M H, Noebels J L. Mutation of the Ca2+ channel beta subunit gene Cchb4 is associated with ataxia and seizures in the lethargic (lh) mouse.  Cell. 1997;  88 385-392
  • 17 Burgess D L, Noebels J L. Single gene defects in mice: the role of voltage-dependent calcium channels in absence models.  Epilepsy Research. 1999;  36 111-122
  • 18 Jouvenceau A, Eunson L H, Spauschus A, Ramesh V, Zuberi S M, Kullmann D M, Hanna M G. Human epilepsy associated with dysfunction of the brain P/Q-type calcium channel.  Lancet. 2001;  358 801-807
  • 19 Vreugdenhil M, Wadman W J. Kindling-induced long-lasting enhancement of calcium current in hippocampal CA1 area of the rat: Relation to calcium-dependent inactivation.  Neuroscience. 1994;  59 105-114
  • 20 Faas G C, Vreugdenhil M, Wadman W J. Calcium currents in pyramidal CA1 neurons in vitro after kindling epileptogenesis in the hippocampus of the rat.  Neurosci. 1996;  75 57-67
  • 21 Beck H, Steffens R, Elger C E, Heinemann U. Voltage-dependent Ca2+ currents in epilepsy.  Epilepsy Research. 1998;  32 321-332
  • 22 Eliot L S, Johnston D. Multiple components of calcium current in acutely dissociated dentate gyrus granule neurons.  Journal of Neurophysiology. 1994;  72 762-777
  • 23 Hendriksen H, Kamphuis W, Lopes da Silva F H. Changes in voltage-dependent calcium channel alpha1-subunit mRNA levels in the kindling model of epileptogenesis.  Brain Res Mol Brain Res. 1997;  50 257-266
  • 24 Westenbroek R E, Bausch S B, Lin R CS, Franck J E, Noebels J L, Catterall W A. Upregulation of L-Type Ca2+ channels in reactive astrocytes after brain injury, hypomyelination, and ischemia.  Journal of Neuroscience. 1998;  18 2321-2334
  • 25 Blümcke I, Beck H, Lie A A, Wiestler O D. Molecular neuropathology of human mesial temporal lobe epilepsy.  Epilepsy Research. 1999;  36 205-223
  • 26 Isokawa M, Levesque M, Fried I, Engel J. Glutamate currents in morphologically identified human dentate granule cells in temporal lobe epilepsy.  Journal of Neurophysiology. 1997;  77 3355-3369
  • 27 Isokawa-Akesson M, Wilson C L, Babb T L. Inhibition in synchronously firing human hippocampal neurons.  Epilepsy Research. 1989;  3 236-247
  • 28 Masukawa L M, Wang H, O'Connor M J, Uruno K. Prolonged field potentials evoked by 1-Hz stimulation in the dentate gyrus of temporal lobe epileptic human brain slices.  Brain Research. 1996;  721 132-139
  • 29 Strowbridge B W, Masukawa L M, Spencer D D, Shepherd G M. Hyperexcitability associated with localizable lesions in epileptic patients.  Brain Research. 1992;  587 158-163
  • 30 Williamson A, Mc Cormick D A, Shepherd C M, Spencer D D. Intracellular recordings from epileptic human dentate granule cells show evidence of hyperexcitability.  Epilepsia. 1990;  31 625
  • 31 Williamson A, Shepherd G M, Spencer D D. Evidence for hyperexcitability near neocortical lesions in epileptic patiens.  Epilepsia. 1991;  32 40
  • 32 Williamson A, Spencer D D. Electrophysiological characterization of CA2 pyramidal cells from epileptic humans.  Hippocampus. 1994;  4 226-237
  • 33 Sayer R J, Brown A M, Schwindt P C, Crill W E. Calcium currents in acutely isolated human neocortical neurons.  Journal of Neurophysiology. 1993;  69 1596-1606
  • 34 Lie A A, Blumcke I, Volsen S G, Wiestler O D, Elger C E, Beck H. Distribution of voltage-dependent calcium channel beta subunits in the hippocampus of patients with temporal lobe epilepsy.  Neuroscience. 1999;  93 449-456
  • 35 Köhr G, Mody I. Endogenous intracellular calcium buffering and the activation/inactivation of HVA calcium currents in rat dentate gyrus granule cells.  Journal of General Physiology. 1991;  98 941-967
  • 36 Köhr G, Lambert C E, Mody I. Calbindin-D28K (CaBP) levels and calcium currents in acutely dissociated epileptic neurons.  Experimental Brain Research. 1991;  85 543-551
  • 37 Baimbridge K G, Mody I, Miller J J. Reduction of rat hippocampal calcium-binding protein following commissural, amygdala, septal, perforant path, and olfactory bulb kindling.  Epilepsia. 1985;  26 460-465
  • 38 Baimbridge K G, Miller J J. Hippocampal calcium-binding protein during commissural kindling-induced epileptogenesis: progressive decline and effects of anticonvulsants.  Brain Research. 1984;  324 85-90
  • 39 Maglóczky Z S, Halász P, Vajda J, Czirják S, Freund T F. Loss of clabindin-D28K immunoreactivity from dentate granule cells in human temporal lobe epilepsy.  Neurosci. 1997;  76 377-385
  • 40 Nägerl U V, Mody I, Jeub M, Lie A A, Elger C E, Beck H. Surviving granule cells of the sclerotic human hippocampus have reduced Ca2+ influx because of a loss of calbindin-D28K in temporal lobe epilepsy.  Journal of Neuroscience. 2000;  20 1831-1836
  • 41 Köhr G, Mody I. Endogenous intracellular calcium buffering and the activation/inactivation of HVA calcium currents in rat dentate gyrus granule cells.  Journal of General Physiology. 1991;  98 941-967
  • 42 Klapstein G J, Vietla S, Lieberman D N, Gray P A, Airaksinen M S, Thoenen H, Meyer M, Mody I. Calbindin-D28K fails to protect hippocampal neurons against ischema in spite of its cytoplasmic calcium buffering properties: evidence from calbindin-D28K knockout mice.  Neurosci. 1998;  85 361-373
  • 43 Schwartzkroin P A. Cellular electrophysiology of human epilepsy.  Epilepsy Research. 1994;  17 185-192
  • 44 Beck H, Steffens R, Heinemann U, Elger C E. Properties of voltage-activated calcium currents in acutely dissociated human hippocampal granule cells.  J Neurophysiology. 1998;  77 1526-1537

Dr. med. Heinz Beck

Klinik für Epileptologie · Medizinische Einrichtungen der Universität Bonn

Sigmund-Freud-Straße 25

53105 Bonn

Email: heinz.beck@ukb.uni-bonn.de

    >