Fortschr Neurol Psychiatr 2002; 70(11): 591-600
DOI: 10.1055/s-2002-35172
Originalarbeit
© Georg Thieme Verlag Stuttgart · New York

Wahrnehmen zeitlicher Relationen, neuronale Synchronisation und die Schizophrenien

Stand der Diskussion und eigene DatenTemporal Perception and Organisation, Neuronal Synchronisation and SchizophreniaD.  F.  Braus1
  • 1NMR-Forschung und Klinik für Psychiatrie und Psychotherapie am Zentralinstitut für Seelische Gesundheit, Mannheim
Für die konstruktive Mitarbeit bei der Datenerhebung und Auswertung sowie die Diskussionsbeiträge danke ich Frau Amrei Tenckhoff, Herrn cand. med. Fabian Höhn und Frau Dipl.-Psych. Heike Tost sowie Herrn Prof. Dr. Andreas Heinz (Berlin).
Further Information

Publication History

Publication Date:
31 October 2002 (online)

Zusammenfassung

Alltagsrelevante perzeptuelle oder motorische Leistungen des zentralen Nervensystems ebenso wie das subjektive Erleben der Gegenwart setzen die geordnete zeitliche Organisation von internalen und externalen Informationseinheiten voraus. Ein Zusammenhang zwischen neuronaler Oszillation und Synchronisation auf der Mikroebene und der Fähigkeit, auf der Makroebene Ereignisse zeitlich zu ordnen, aufeinander zu beziehen und darauf motorisch zu reagieren, wird angenommen. Auch bei schizophrenen Psychosen werden seit langem sowohl Störungen in der Zeitwahrnehmung als auch der sensomotorischen Koordinierung berichtet. Außerdem konnte bei der Untersuchung der Beurteilung der zeitlichen Ordnung im visuellen und akustischen Bereich eine signifikante Beeinträchtigung basaler Zeitwahrnehmungsfunktionen sowohl bei 28 chronischen als auch bei 7 unmedizierten an Schizophrenie Erkrankten nachgewiesen werden. Die vorliegenden Befunde weisen auf eine fundamentale Störung der zeitlichen Organisation im Gehirn von Patienten mit schizophrenen Psychosen hin. Im Kontext mit neurophysiologischen, neurochemischen, neuroanatomischen und neuropsychologischen Überschneidungen von Schizophrenie und gestörter Zeitwahrnehmung wird der gegenwärtige Stand der Diskussion hierzu in dieser Arbeit dargestellt.

Abstract

Basic perceptual or motor skills involving the central nervous system as well as the subjective present require the orderly temporal organization of internal and external information. Current research in schizophrenia increasingly centers on the accompanying neurocognitive deficits with frequent reports of altered temporal processes. There has been, however, less explicit research on the basic phenomenon of temporal order. Using concrete operationalized neuropsychological procedures the present study addressed the question whether chronic schizophrenic patients (28 medicated as well as 7 unmedicated) differ in their ability to correctly judge the temporal order of visual or acoustic stimuli when compared with a healthy control group (n = 26). Within this context we found a significant impairment in basal temporal perception among patients. Moderating variables such as medication, attention deficits or the effects of motivation as an essential explanatory factor for this finding could be excluded by statistical analysis. Instead, our findings point to a fundamental disturbance in the temporal coordination of neuronal network functions in association with schizophrenic psychoses. Within this context neurophysiological, neurochemical, neuroanatomical and neuropsychological overlapping of schizophrenia and temporal perception are being presented along with a discussion of the hypothesis that disturbances in neuronal synchronization and in timing processes at different levels are of essence and a possible underlying substrate in the schizophrenic spectrum.

Literatur

  • 1 Mundt C, Richter P, van Hees H, Stumpf T. Zeiterleben und Zeiteinschätzung depressiver Patienten.  Nervenarzt. 1998;  69 38-45
  • 2 Efron R. Temporal perception, aphasia and deja vu.  Brain. 1963;  86 403-424
  • 3 Tallal P, Miller S, Fitch R H. Neurobiological basis of speech: a case for the preeminence of temporal processing.  Ann N Y Acad Sci. 1993;  682 27-47
  • 4 Tallal P, Miller S L, Bedi G, Byma G, Wang X, Nagarajan S S, Schreiner C, Jenkins W M, Merzenich M M. Language comprehension in language-learning impaired children improved with acoustically modified speech.  Science. 1996;  271 81-84
  • 5 Schmahmann J D. An emerging concept. The cerebellar contribution to higher function.  Arch Neurol. 1991;  48 1178-1187
  • 6 Andreasen N C, Paradiso S, O'Leary D S. “Cognitive dysmetria” as an integrative theory of schizophrenia: a dysfunction in cortical-subcortical-cerebellar circuitry?.  Schizophr Bull. 1998;  24 203-218
  • 7 Green M F, Nuechterlein K H. Cortical oscillations and schizophrenia: timing is of the essence.  Arch Gen Psychiatry. 1999;  56 1007-1008
  • 8 Hirsh I J. Auditory perception of temporal order.  Journal of the Acoustical Soceity of America. 1959;  31 759-767
  • 9 Hirsh I J, Sherrick C EJ. Perceived order in different sense modalities.  J Exp Psychol. 1961;  62 423-432
  • 10 Ilmberger J. Auditory excitability cycles in choice reaction time and order threshold.  Naturwissenschaften. 1986;  73 743-744
  • 11 Pöppel E, Schill K, von Steinbuchel N. Sensory integration within temporally neutral systems states: a hypothesis.  Naturwissenschaften. 1990;  77 89-91
  • 12 Jaskowski P. Perceived onset simultaneity of stimuli with unequal durations.  Perception. 1991;  20 715-726
  • 13 Pöppel E. A hierarchical model of temporal perception.  Trends in Cognitive Sciences. 1997;  1 56-61
  • 14 Wittmann M. Time perception and temporal processing levels of the brain.  Chronobiol Int. 1999;  16 17-32
  • 15 Corso G M. Auditory temporal order and perceived fusion-nonfusion.  Percept Psychophys. 1980;  28 465-470
  • 16 Lotze M, Montoya P, Erb M, Hulsmann E, Flor H, Klose U, Birbaumer N, Grodd W. Activation of cortical and cerebellar motor areas during executed and imagined hand movements: an fMRI study.  J Cogn Neurosci. 1999;  11 491-501
  • 17 Alving B O. Spontaneous activity in isolated somata of Aplysia pacemaker naurons.  J Gen Physiol. 1968;  51 29-45
  • 18 Changeux J-P. Der neuronale Mensch. Reinbek bei Hamburg: Rowohlt 1984
  • 19 Wang X J. Ionic basis for intrinsic 40 Hz neuronal oscillations.  Neuroreport. 1993;  5 221-224
  • 20 Ahissar E, Haidarliu S, Zacksenhouse M. Decoding temporally encoded sensory input by cortical oscillations and thalamic phase comparators.  Proc Natl Acad Sci U S A. 1997;  94 11 633-11 638
  • 21 Ahissar E. Temporal-code to rate-code conversion by neuronal phase-locked loops.  Neural Comput. 1998;  10 597-650
  • 22 Gray C M, Singer W. Stimulus-specific neuronal oscillations in orientation columns of cat visual cortex.  Proc Natl Acad Sci U S A. 1989;  86 1698-1702
  • 23 Lestienne R. Intrinsic and extrinsic neuronal mechanisms in temporal coding: a further look at neuronal oscillations.  Neural Plast. 1999;  6 173-189
  • 24 von Steinbüchel N. Temporal system states in speech processing. In: Herrmann HJ, Wolf DE, Pöppel E (Hrsg.). Workshop in brain research: from tomography to neural networks Singapore: World Scientific Publishing Company 1995: 75-81
  • 25 Engel A K, Roelfsema P R, Fries P, Brecht M, Singer W. Role of the temporal domain for response selection and perceptual binding.  Cereb Cortex. 1997;  7 571-582
  • 26 Engel A K, Fries P, Konig P, Brecht M, Singer W. Temporal binding, binocular rivalry, and consciousness.  Conscious Cogn. 1999;  8 128-151
  • 27 Imhof P. Tools of thinking.  Science. 2000;  287 1935-1936
  • 28 Singer W. Development and plasticity of cortical processing architectures.  Science. 1995;  270 758-764
  • 29 Fell J, Klaver P, Lehnertz K, Grunwald T, Schaller C, Elger C E, Fernández G. Human memory formation is accompanied by rhinal-hippocampal coupling and decoupling.  Nat Neurosci. 2001;  4 1259-1264
  • 30 Schwender D, Madler C, Klasing S, Peter K, Poppel E. Anesthetic Control of 40-Hz brain activity and implicit memory.  Consciousness and Cognition. 1994;  3 129-147
  • 31 Pöppel E, Logothetis N. Neuronal oscillations in the human brain. Discontinuous initiations of pursuit eye movements indicate a 30-Hz temporal framework for visual information processing.  Naturwissenschaften. 1986;  73 267-268
  • 32 Jokeit H. Analysis of periodicities in human reaction times.  Naturwissenschaften. 1990;  77 289-291
  • 33 Pöppel E. Eine neuropsychologische Definition des Zustandes „bewusst”. In: Pöppel E (Hrsg.). Gehirn und Bewusstsein Weinheim: VHC Verlagsgesellschaft 1989: 17-32
  • 34 Pöppel E. Temporal mechanisms in perception.  International Review of Neurobiology. 1994;  37 185-202
  • 35 Joliot M, Ribary U, Llinas R. Human oscillatory brain activity near 40 Hz coexists with cognitive temporal binding.  Proc Natl Acad Sci USA. 1994;  91 11 748-11 751
  • 36 von Steinbüchel N, Wittmann M, de Langen E G. Zeitliche Informationsverarbeitung und Sprache - ein integraler Ansatz in der Aphasietherapie.  Verhaltensmodifikation und Verhaltensmedizin. 1996;  17 327-347
  • 37 Schubotz R I, Friederici A D, von Cramon D Y. Time perception and motor timing: a common cortical and subcortical basis revealed by fMRI.  Neuroimage. 2000;  11 1-12
  • 38 Mangels J A, Ivry R B, Shimizu N. Dissociable contributions of the prefrontal and neocerebellar cortex to time perception.  Brain Res Cogn Brain Res. 1998;  7 15-39
  • 39 Lalonde R, Hannequin D. The neurobiological basis of time estimation and temporal order.  Rev Neurosci. 1999;  10 151-173
  • 40 Harrington D L, Haaland K Y, Knight R T. Cortical networks underlying mechanisms of time perception.  J Neurosci. 1998;  18 1085-1095
  • 41 Harrington D L, Haaland K Y, Hermanowicz N. Temporal processing in the basal ganglia.  Neuropsychology. 1998;  12 3-12
  • 42 Nichelli P, Alway D, Grafman J. Perceptual timing in cerebellar degeneration.  Neuropsychologia. 1996;  34 863-871
  • 43 Bleuler E. Dementia praecox or the group of schizophrenias. New York: International Universities Press 1950
  • 44 Spitzer M, Weisker I, Winter M, Maier S, Hermle L, Maher B A. Semantic and phonological priming in schizophrenia.  J Abnorm Psychol. 1994;  103 485-494
  • 45 Manschreck T C, Maher B A, Milavetz J J, Ames D, Weisstein C C, Schneyer M L. Semantic priming in thought disordered schizophrenic patients.  Schizophr Res. 1988;  1 61-66
  • 46 Kircher T T, Liddle P F, Brammer M J, Williams S C, Murray R M, McGuire P K. Neural correlates of formal thought disorder in schizophrenia: preliminary findings from a functional magnetic resonance imaging study.  Arch Gen Psychiatry. 2001;  58 769-774
  • 47 Fuster J M. The prefrontal cortex. Anatomy, physiology, and neuropsychology of the frontal lobe. 3 Aufl. Philadelphia, New York: Lippincott-Raven 1997
  • 48 Jirsa R, Libiger J, Mohr P, Radil T, Indra M. Rhythmic finger-tapping task and fast segmentation of neural processing in schizophrenics.  Biol Psychiatry. 1996;  40 1301-1304
  • 49 Seeman M V. Time and Schizophrenia.  Psychiatry. 1976;  39 189-195
  • 50 Volz H P, Nenadic I, Gaser C, Rammsayer T, Häger F, Sauer H. Time estimation in schizophrenia: an fMRI study at adjusted levels of difficulty.  Neuroreport. 2001;  12 313-316
  • 51 Densen M E. Time perception and schizophrenia.  Percept Mot Skills. 1977;  44 436-438
  • 52 Rizzo L, Danion J M, van der Linden M, Grange D. Patients with schizophrenia remember that an event has occurred, but not when.  Br J Psychiatry. 1996;  168 427-431
  • 53 Hooker C, Park S. Trajectory estimation in schizophrenia.  Schizophr Res. 2000;  45 83-92
  • 54 Braus D F, Teckhoff A, Tost H. Alteration of temporal order threshold in schizophrenia.  Biol Psychiatry. 2001;  49 S121-122
  • 55 Murray R M, O'Callaghan E, Castle D J, Lewis S W. A neurodevelopmental approach to the classification of schizophrenia.  Schizophr Bull. 1992;  18 319-332
  • 56 McGlashan T H, Hoffman R E. Schizophrenia as a disorder of developmentally reduced synaptic connectivity.  Arch Gen Psychiatry. 2000;  57 637-648
  • 57 Buchsbaum M S, Tang C Y, Peled S, Gudbjartsson H, Lu D, Hazlett E A, Downhill J, Haznedar M, Fallon J H, Atlas S W. MRI white matter diffusion anisotropy and PET metabolic rate in schizophrenia.  Neuroreport. 1998;  9 425-430
  • 58 Weinberger D R, Lipska B K. Cortical maldevelopment, anti-psychotic drugs, and schizophrenia: a search for common ground.  Schizophr Res. 1995;  16 87-110
  • 59 Andreasen N C, Ehrhardt J C, Swayze V WD, Alliger R J, Yuh W T, Cohen G, Ziebell S. Magnetic resonance imaging of the brain in schizophrenia. The pathophysiologic significance of structural abnormalities.  Arch Gen Psychiatry. 1990;  47 35-44
  • 60 Andreasen N C. A unitary model of schizophrenia. Bleuler's “fragmented phrene” as schizencephaly.  Arch Gen Psychiatry. 1999;  56 781-787
  • 61 Andreasen N C, Nopoulos P, O'Leary D S, Miller D D, Wassink T, Flaum M. Defining the phenotype of schizophrenia: cognitive dysmetria and its neural mechanisms.  Biol Psychiatry. 1999;  46 908-920
  • 62 Dierks T, Strik W K, Maurer K. Electrical brain activity in schizophrenia described by equivalent dipoles of FFT-data.  Schizophr Res. 1995;  14 145-154
  • 63 Maurer K, Dierks T, Strik W K, Frolich L. P3 topography in psychiatry and psychopharmacology.  Brain Topogr. 1990;  3 79-84
  • 64 Maurer K, Hafner H. Methodological aspects of onset assessment in schizophrenia.  Schizophr Res. 1995;  15 265-276
  • 65 Strik W K, Dierks T, Kulke H, Maurer K, Fallgatter A. The predictive value of P300-amplitudes in the course of schizophrenic disorders.  J Neural Transm. 1996;  103 1351-1359
  • 66 Strik W K, Dierks T, Franzek E, Stober G, Maurer K. P300 in schizophrenia: interactions between amplitudes and topography.  Biol Psychiatry. 1994;  35 850-856
  • 67 Strik W K, Dierks T, Franzek E, Stober G, Maurer K. P300 asymmetries in schizophrenia revisited with reference-independent methods.  Psychiatry Res. 1994;  55 153-166
  • 68 Valkonen-Korhonen M, Karjalainen P, Lehtonen J, Koistinen A, Partanen J, Karhu J. Loss of time-organized sympathetic skin responses in acute psychosis.  J Nerv Ment Dis. 2001;  189 552-556
  • 69 Green M F. Schizophrenia from a neurocognitive perspective. Boston, London, Toronto, Sydney, Singapore: Allyn and Bacon 1998
  • 70 Braff D L. Impaired speed of information processing in nonmedicated schizotypal patients.  Schizophr Bull. 1981;  7 499-508
  • 71 Braff D L, Saccuzzo D P. Information processing dysfunction in paranoid schizophrenia: a two- factor deficit.  Am J Psychiatry. 1981;  138 1051-1056
  • 72 Braff D L, Saccuzzo D P. The time course of information-processing deficits in schizophrenia.  Am J Psychiatry. 1985;  142 170-174
  • 73 Braff D L, Callaway E, Naylor H. Very short-term memory dysfunction in schizophrenia. Defective short time constant information processing in schizophrenia.  Arch Gen Psychiatry. 1977;  34 25-30
  • 74 Nuechterlein K H, Dawson M E. Increased critical stimulus duration: vulnerability or episode indicator?.  Schizophrenia Bulletin. 1985;  11 344-346
  • 75 Kwon J S, O'Donnell B F, Wallenstein G V, Greene R W, Hirayasu Y, Nestor P G, Hasselmo M E, Potts G F, Shenton M E, McCarley R W. Gamma frequency-range abnormalities to auditory stimulation in schizophrenia.  Arch Gen Psychiatry. 1999;  56 1001-1005
  • 76 Parnas J, Vianin P, Saebye D, Jansson L, Volmer-Larsen A, Bovet P. Visual binding abilities in the initial and advanced stages of schizophrenia.  Acta Psychiatr Scand. 2001;  103 171-180
  • 77 Walker E F, Savoie T, Davis D. Neuromotor precursors of schizophrenia.  Schizophr Bull. 1994;  20 441-451
  • 78 Walker E F. Developmentally moderated expressions of the neuropathology underlying schizophrenia.  Schizophr Bull. 1994;  20 453-480
  • 79 Ismail B, Cantor-Graae E, McNeil T F. Neurological abnormalities in schizophrenic patients and their siblings.  Am J Psychiatry. 1998;  155 84-89
  • 80 Karr M, Schröder J, Tittel A. Neurologische soft signs und neuropsychologische Störungen bei schizophrenen Psychosen.  Nervenheilkunde. 1996;  15 326-331
  • 81 Schröder J, Essig M, Baudendistel K, Jahn T, Gerdsen I, Stockert A, Schad L R, Knopp M V. Motor dysfunction and sensorimotor cortex activation changes in schizophrenia: A study with functional magnetic resonance imaging.  Neuroimage. 1999;  9 81-87
  • 82 Flashman L A, Flaum M, Gupta S, Andreasen N C. Soft signs and neuropsychological performance in schizophrenia.  Am J Psychiatry. 1996;  153 526-532
  • 83 Gupta S, Andreasen N C, Arndt S, Flaum M, Schultz S K, Hubbard W C, Smith M. Neurological soft signs in neuroleptic-naive and neuroleptic-treated schizophrenic patients and in normal comparison subjects.  Am J Psychiatry. 1995;  152 191-196
  • 84 Diefendorf A R, Dodge R. An experimental study of the ocular reactions of the insane from photographic records.  Brain. 1908;  31 451-489
  • 85 Holzman P S, Proctor L R, Levy D L, Yasillo N J, Meltzer H Y, Hurt S W. Eye-tracking dysfunctions in schizophrenic patients and their relatives.  Arch Gen Psychiatry. 1974;  31 143-151
  • 86 Weinberger D R. The biological basis of schizophrenia: new directions.  J Clin Psychiatry. 1997;  58 22-27
  • 87 Braus D F. Schizophrenia as a misconnection syndrome: a fMRI study.  Neuroimage. 1997;  5 293
  • 88 Sears L L, Andreasen N C, O'Leary D S. Cerebellar functional abnormalities in schizophrenia are suggested by classical eyeblink conditioning.  Biol Psychiatry. 2000;  48 204-209
  • 89 Chen C, Kano M, Abeliovich A, Chen L, Bao S, Kim J J, Hashimoto K, Thompson R F, Tonegawa S. Impaired motor coordination correlates with persistent multiple climbing fiber innervation in PKC gamma mutant mice.  Cell. 1995;  83 1233-1242
  • 90 Bao S, Chen L, Qiao X, Knusel B, Thompson R F. Impaired eye-blink conditioning in waggler, a mutant mouse with cerebellar BDNF deficiency.  Learn Mem. 1998;  5 355-364
  • 91 Woodruff-Pak D S, Papka M, Simone E. Eyeblink classical conditioning in Down's syndrome, Fragile X syndrome, and normal adults over and under age 35.  Neuropsychology. 1994;  8 14-24
  • 92 Sears L L, Finn P R, Steinmetz J E. Abnormal classical eye-blink conditioning in autism.  J Autism Dev Disord. 1994;  24 737-751
  • 93 Kano M, Hashimoto K, Chen C, Abeliovich A, Aiba A, Kurihara H, Watanabe M, Inoue Y, Tonegawa S. Impaired synapse elimination during cerebellar development in PKC gamma mutant mice.  Cell. 1995;  83 1223-1231
  • 94 Kandel E R, Schwartz J H, Jessell T M. Hrsg .Neurowissenschaften. Eine Einführung. Heidelberg: Spektrum Akademischer Verlag 1996
  • 95 Wible C G, Shenton M E, Hokama H, Kikinis R, Jolesz F A, Metcalf D, McCarley R W. Prefrontal cortex and schizophrenia. A quantitative magnetic resonance imaging study.  Arch Gen Psychiatry. 1995;  52 279-288
  • 96 Shenton M E, Kikinis R, Jolesz F A, Pollak S D, LeMay M, Wible C G, Hokama H, Martin J, Metcalf D, Coleman M. et al . Abnormalities of the left temporal lobe and thought disorder in schizophrenia. A quantitative magnetic resonance imaging study.  N Engl J Med. 1992;  327 604-612
  • 97 DeLisi L E, Sakuma M, Tew W, Kushner M, Hoff A L, Grimson R. Schizophrenia as a chronic active brain process: a study of progressive brain structural change subsequent to the onset of schizophrenia.  Psychiatry Res. 1997;  74 129-140
  • 98 Woodruff P W, Wright I C, Shuriquie N, Russouw H, Rushe T, Howard R J, Graves M, Bullmore E T, Murray R M. Structural brain abnormalities in male schizophrenics reflect fronto-temporal dissociation.  Psychol Med. 1997;  27 1257-1266
  • 99 Woodruff P W, Wright I C, Bullmore E T, Brammer M, Howard R J, Williams S C, Shapleske J, Rossell S, David A S, McGuire P K, Murray R M. Auditory hallucinations and the temporal cortical response to speech in schizophrenia: a functional magnetic resonance imaging study.  Am J Psychiatry. 1997;  154 1676-1682
  • 100 Barta P E, Pearlson G D, Powers R E, Richards S S, Tune L E. Auditory hallucinations and smaller superior temporal gyral volume in schizophrenia.  Am J Psychiatry. 1990;  147 1457-1462
  • 101 Andreasen N C, Rezai K, Alliger R, Swayze V Wd, Flaum M, Kirchner P, Cohen G, O'Leary D S. Hypofrontality in neuroleptic-naive patients and in patients with chronic schizophrenia. Assessment with xenon 133 single-photon emission computed tomography and the Tower of London.  Arch Gen Psychiatry. 1992;  49 943-958
  • 102 Deicken R F, Merrin E L, Floyd T C, Weiner M W. Correlation between left frontal phospholipids and Wisconsin Card Sort Test performance in schizophrenia.  Schizophr Res. 1995;  14 177-181
  • 103 Zipursky R B, Lim K O, Sullivan E V, Brown B W, Pfefferbaum A. Widespread cerebral gray matter volume deficits in schizophrenia.  Arch Gen Psychiatry. 1992;  49 195-205
  • 104 Zipursky R B, Marsh L, Lim K O, DeMent S, Shear P K, Sullivan E V, Murphy G M, Csernansky J G, Pfefferbaum A. Volumetric MRI assessment of temporal lobe structures in schizophrenia.  Biol Psychiatry. 1994;  35 501-516
  • 105 Pearlson G D, Petty R G, Ross C A, Tien A Y. Schizophrenia: a disease of heteromodal association cortex?.  Neuropsychopharmacology. 1996;  14 1-17
  • 106 Ross C A, Pearlson G D. Schizophrenia, the heteromodal association neocortex and development: potential for a neurogenetic approach.  Trends Neurosci. 1996;  19 171-176
  • 107 Davidsson P, Gottfries J, Bogdanovic N, Ekman R, Karlsson I, Gottfries C G, Blennow K. The synaptic-vesicle-specific proteins rab3a and synaptophysin are reduced in thalamus and related cortical brain regions in schizophrenic brains.  Schizophr Res. 1999;  40 23-29
  • 108 Andreasen N C, Arndt S, Swayze 2nd  V, Cizadlo T, Flaum M, O'Leary D, Ehrhardt J C, Yuh W T. Thalamic abnormalities in schizophrenia visualized through magnetic resonance image averaging.  Science. 1994;  266 294-298
  • 109 Henn F A, Braus D F. Structural neuroimaging in schizophrenia. An integrative view of neuromorphology.  Eur Arch Psychiatry Clin Neurosci. 1999;  249 48-56
  • 110 Carmon A, Nachshon I. Effect of unilateral brain damage on perception of temporal order.  Cortex. 1971;  7 411-418
  • 111 Swisher L, Hirsh I J. Brain damage and the ordering of two temporally successive stimuli.  Neuropsychologia. 1972;  10 137-152
  • 112 Lackner J R, Teuber H L. Alterations in auditory fusion thresholds after cerebral injury in man.  Neuropsychologia. 1973;  11 409-415
  • 113 Sherwin I, Efron R. Temporal ordering deficits following anterior temporal lobectomy.  Brain Lang. 1980;  11 195-203
  • 114 Cutting J, Silzer H. Psychopathology of time in brain disease and Schizophrenia.  Behavioural Neurology. 1990;  3 197-215
  • 115 Block R I, O'Leary D S, Hichwa R D, Augustinack J C, Ponto L L, Ghoneim M M, Arndt S, Ehrhardt J C, Hurtig R R, Watkins G L, Hall J A, Nathan P E, Andreasen N C. Cerebellar hypoactivity in frequent marijuana users.  Neuroreport. 2000;  11 749-753
  • 116 Foley P. The L-DOPA story revisited. Further surprises to be expected?.  J Neural Transm Suppl. 2000;  60 1-20
  • 117 Seeman P. Dopamine receptors and the dopamine hypothesis of schizophrenia.  Synapse. 1987;  1 133-152
  • 118 Kornhuber J, Weller M. Aktueller Stand der biochemischen Hypothesen zur Pathogenese der Schizophrenien.  Nervenarzt. 1994;  65 741-754
  • 119 Carlsson A, Hansson L O, Waters N, Carlsson M L. Neurotransmitter aberrations in schizophrenia: new perspectives and therapeutic implications.  Life Sci. 1997;  61 75-94
  • 120 Lieberman J A, Kinon B J, Loebel A D. Dopaminergic mechanisms in idiopathic and drug-induced psychoses.  Schizophr Bull. 1990;  16 97-110
  • 121 Angrist B, Sathananthan G, Wilk S, Gershon S. Amphetamine psychosis: behavioral and biochemical aspects.  J Psychiatr Res. 1974;  11 13-23
  • 122 Rammsayer T H. Neuropharmacological evidence for different timing mechanisms in humans.  Q J Exp Psychol B. 1999;  52 273-286
  • 123 Seeman P, Tallerico T. Rapid release of antipsychotic drugs from dopamine D2 receptors: an explanation for low receptor occupancy and early clinical relapse upon withdrawal of clozapine or quetiapine.  Am J Psychiatry. 1999;  156 876-884
  • 124 Tallal P, Stark R E, Mellits D. The relationship between auditory temporal analysis and receptive language development: evidence from studies of developmental language disorder.  Neuropsychologia. 1985;  23 527-534
  • 125 Braus D F, Tost H, Hirsch J G, Gass A. Diffusions-Tensor-Bildgebung (DTI) und funktionelle Magnetresonanztomographie (fMRI) erweitern das Methodenspektrum in der psychiatrischen Forschung.  Der Nervenarzt. 2001;  72 384-390

Priv.-Doz. Dr. D. F. Braus

Postfach 12 21 20

68072 Mannheim

Email: dfbraus@zi-mannheim.de

    >