Plant Biol (Stuttg) 2002; 4(6): 688-693
DOI: 10.1055/s-2002-37406
Original Paper
Georg Thieme Verlag Stuttgart ·New York

Clonal Differences in the Formation of Turions are Independent of the Specific Turion-inducing Signal in Spirodela polyrhiza (Great Duckweed)

K.-J. Appenroth
  • Institut für Allgemeine Botanik und Pflanzenphysiologie, Friedrich-Schiller-Universität Jena, Jena, Germany
Weitere Informationen

Publikationsverlauf

Received: November 23, 2002

Accepted: December 9, 2002

Publikationsdatum:
24. Februar 2003 (online)

Abstract

Turion (survival organ) formation in Spirodela polyrhiza includes a switch in the programming of the primordia from the formation of vegetative fronds toward resting turions. The specific turion yield (SY; number of turions formed by one frond) is used to evaluate the effect of three turion-inducing signals: low phosphate concentration (depleted due to frond growth), low temperature (15 °C) and exogenously applied abscisic acid (1 μM). The formation of turions was observed in the presence of any of the turion-inducing factors in all three clones of S. polyrhiza investigated (clones 9256 from Finland, SJ from Germany and SC from Cuba). The clone SC showed no specific induction by low temperature or phosphate limitation in one nutrient medium. Regardless of the specific signal applied, the SYs were highest in clone 9256 and lowest in clone SC, demonstrating signal-independent clonal differences. Clonal differences are therefore located in the developmental-specific common phase of the transduction chains leading to turion formation. We intend to use clonal differences in the molecular analysis of turion formation, e.g., by cDNA-based amplified fragment length polymorphism, to distinguish signal-specific and developmental-specific gene expression. In contrast, the total turion yield is useful in an ecological context to evaluate the number of turions available to support the survival of a population of plants but gives little information about the physiological process.

Abbreviations

ABA: abscisic acid

SY: specific yield of turions

TY: total yield of turions

References

  • 01 Appenroth,  K.-J.. (2002);  Co-action of temperature and phosphate in inducing turion formation in Spirodela polyrhiza (Great duckweed).  Plant, Cell Environ.. 25 in press
  • 02 Appenroth,  K.-J., and Bergfeld,  R.. (1993);  Photophysiology of turion germination in Spirodela polyrhiza (L.) Schleiden. XI. Structural changes during red light induced responses.  J. Plant Physiol.. 141 583-588
  • 03 Appenroth,  K.-J., and Gabrys,  H.. (2001);  Light-induced starch degradation in non-dormant turions of Spirodela polyrhiza. .  Photochem. Photobiol.. 73 77-82
  • 04 Appenroth,  K.-J.,, Hertel,  W.,, and Augsten,  H.. (1990);  Phytochrome control of turion formation in Spirodela polyrhiza L. Schleiden.  Annals Bot.. 66 163-168
  • 05 Appenroth,  K.-J.,, Hertel,  W.,, Jungnickel,  F.,, and Augsten,  H.. (1989);  Influence of nutrient deficiency and light on turion formation in Spirodela polyrhiza (L.) Schleiden.  Biochem. Physiol. Pflanzen. 184 395-403
  • 06 Appenroth,  K.-J.,, Teller,  S.,, and Horn,  M.. (1996);  Photophysiology of turion formation and germination in Spirodela polyrhiza (L.) Schleiden.  Experimental methods. Biol. Plant.. 38 95-106
  • 07 Bachem,  C. W. B.,, Oomen,  R. J. F. J.,, and Visser,  R. G. F.. (1998);  Transcript imaging with cDNA-AFLP; A step-by-step protocol.  Plant Molec. Biol. Rep.. 16 157-173
  • 08 Bartley,  M. R., and Spence,  D. H. N.. (1987);  Dormancy and propagation in heliophytes and hydrophytes.  Archiv Hydrobiol., Beiheft. 27 139-155
  • 09 Browse,  J., and Xin,  Z.. (2001);  Temperature sensing and cold acclimation.  Current Opinion Plant Biol.. 4 241-246
  • 10 Chaloupkova,  K., and Smart,  C. C.. (1994);  The abscisic acid induction of a novel peroxidase is antagonized by cytokinin in Spirodela polyrrhiza L..  Plant Physiol.. 105 497-507
  • 11 Ciereszko,  I., and Barbachowska,  A.. (2000);  Sucrose metabolism in leaves and roots of bean (Phaseolus vulgaris L.) during phosphate deficiency.  J. Plant Physiol.. 156 640-644
  • 12 Färber,  E., and Kandeler,  R.. (1989);  Significance of calcium ions in the overcrowding effect in Spirodela polyrrhiza P143.  J. Plant Physiol.. 135 94-98
  • 13 Flores,  S., and Smart,  C. C.. (2000);  Abscisic acid-induced changes in inositol metabolism in Spirodela polyrrhiza. .  Planta. 211 823-832
  • 14 Henssen,  A.. (1954);  Die Dauerorgane von Spirodela polyrhiza (L.) Schleid. in physiologischer Betrachtung.  Flora. 141 523-566
  • 15 Hippler,  M.,, Klein,  J.,, Fink,  A.,, Allinger,  T.,, and Hoerth,  P.. (2001);  Toward functional proteomics of membrane protein complexes: analysis of thylakoid membranes from Chlamydomonas reinhardtii. .  Plant J.. 28 595-606
  • 16 Jacobs,  D. L.. (1947);  An ecological life history of Spirodela polyrrhiza (greater duckweed) with emphasis on the turion phase.  Ecol. Monography. 17 437-469
  • 17 Landolt,  E.. (1986) The family of Lemnaceae - a monographic study, Vol. 1. Biosystematic Investigations in the Family of Duckweeds (Lemnaceae). . Zürich; Veröffentlichungen des Geobotanischen Institutes der ETH, Stiftung Rübel
  • 18 Landolt,  E.. (1998);  Lemna yungensis, a new duckweed species from rocks of the Andean Yungas in Bolivia.  Bull. Geobot. Inst. ETH. 64 15-21
  • 19 Landolt,  E., and Kandeler,  R.. (1987) The family of Lemnaceae - a monographic study, Vol. 2. Biosystematic Investigations in the Family of Duckweeds (Lemnaceae). . Zürich; Veröffentlichungen des Geobotanischen Institutes der ETH, Stiftung Rübel
  • 20 Les,  D. H.,, Crawford,  D. J.,, Landolt,  E.,, Gabel,  J. D.,, and Kemball,  R. T.. (2002);  Phylogeny and systematics of Lemnaceae, the duckweed family.  Syst. Bot.. 27 221-240
  • 21 Liu,  J. Y.,, Gilmour,  S. J.,, Thomashow,  M. F.,, and van Nocker,  S.. (2002);  Cold signaling associated with vernalization in Arabidopsis thaliana does not involve CBF1 or abscisic acid.  Physiol. Plant.. 114 125-134
  • 22 Malek,  L., and Cossins,  E.. (1983);  Senescence, turion development, and turion germination in nitrate- and sulfate-deficient Spirodela polyrhiza. Relationship between nutrient availability and exogenous cytokinins.  Can. J. Bot.. 61 1887-1897
  • 23 Newton,  R. J.,, Shelton,  D. R.,, Disharoon,  S.,, and Duffey,  J. E.. (1978);  Turion formation and germination in Spirodela polyrhiza. .  Am. J. Bot.. 65 421-428
  • 24 Perry,  T. O.. (1968);  Dormancy, turion formation, and germination by different clones of Spirodela polyrrhiza. .  Plant Physiol.. 43 1866-1869
  • 25 Perry,  T. O., and Byrne,  O. R.. (1969);  Turion induction in Spirodela polyrrhiza by abscisic acid.  Plant Physiol.. 43 784-785
  • 26 Plaxton,  W. C., and Carswell,  M. C.. (1999) Metabolic aspects of the phosphate starvation response in plants. Plant response to environmental stress. From phytohormones to genome reorganization. Lerner, H. R., ed. New York - Basel; Marcel Dekker Inc. pp. 349-372
  • 27 Sibasaki,  T., and Oda,  Y.. (1979);  Heterogeneity of dormancy in the turions of Spirodela polyrrhiza. .  Plant Cell Physiol.. 20 563-571
  • 28 Smart,  C. C., and Fleming,  A. J.. (1993);  A plant gene with homology to D-myo-inositol-3-phosphate synthase is rapidly and spatially up-regulated during an abscisic-acid-induced morphogenic response in Spirodela polyrrhiza. .  Plant J.. 4 279-293
  • 29 Smart,  C. C.,, Fleming,  A. J.,, Chaloupkova,  K.,, and Hanke,  D. E.. (1995);  The physiological role of abscisic acid in eliciting turion morphogenesis.  Plant Physiol.. 108 623-632
  • 30 Smart,  C. C., and Trewavas,  A. J.. (1983);  Abscisic-acid-induced turion formation in Spirodela polyrrhiza L. I. Production and development of the turion.  Plant Cell Environ.. 6 507-514
  • 31 Srivastava,  A., and Appenroth,  K.-J.. (1995);  Interaction of EDTA and Iron on the accumulation of Cd2+ in duckweeds (Lemnaceae). .  J. Plant Physiol.. 146 173-176
  • 32 Srivastava,  A., and Jaiswal,  V. S.. (1989);  Effect of cadmium on turion formation and germination of Spirodela polyrrhiza L..  J. Plant Physiol.. 134 385-387
  • 33 Steward,  G. R.. (1969);  Abscisic acid and morphogenesis in Lemna polyrhiza L..  Nature. 221 61-62
  • 34 Weyers,  J. D. B., and Paterson,  N. W.. (2001);  Plant hormones and the control of physiological processes.  New Phytol.. 152 375-408
  • 35 Wilkinson,  S., and Davis,  W. J.. (2002);  ABA-based chemical signalling: the co-ordination of responses to stress in plants.  Plant Cell Environ.. 25 195-210

K.-J. Appenroth

Institut für Allgemeine Botanik und Pflanzenphysiologie
Friedrich-Schiller-Universität Jena

Dornburger Straße 159
Jena
Germany

eMail: klaus.appenroth@uni-jena.de

Section Editor: S. M. Wick

    >