References
<A NAME="RD26802ST-1A">1a</A>
Griengl H.
Hickel A.
Johnson DV.
Kratky C.
Schmidt M.
Schwab H.
Chem.
Commun.
1997,
1933
<A NAME="RD26802ST-1B">1b</A>
Effenberger F.
Angew.
Chem., Int. Ed. Engl.
1994,
33:
1555
<A NAME="RD26802ST-1C">1c</A>
North M.
Synlett
1993,
807
<A NAME="RD26802ST-1D">1d</A>
Herranz R.
Castro-Pichel J.
García-López T.
Synthesis
1989,
703
<A NAME="RD26802ST-2">2</A>
Gregory RJH.
Chem. Rev.
1999,
99:
3649
<A NAME="RD26802ST-3A">3a</A>
Gröger H.
Capan E.
Barthuber A.
Vorlop K.-D.
Org. Lett.
2001,
3:
1969
<A NAME="RD26802ST-3B">3b</A>
Hanefeld U.
Straathof AJJ.
Heijnen JJ.
J. Mol. Catal. B: Enzym.
2001,
11:
213
<A NAME="RD26802ST-3C">3c</A>
Ognyanov VI.
Datcheva VK.
Kyler KS.
J. Am. Chem. Soc.
1991,
113:
6992
Recent examples include:
<A NAME="RD26802ST-4A">4a</A>
Gama A.
Flores-López LZ.
Aguirre G.
Parra-Hake M.
Somanathan R.
Walsh PJ.
Tetrahedron:
Asymmetry
2002,
13:
149
<A NAME="RD26802ST-4B">4b</A>
Liang S.
Bu XR.
J. Org. Chem.
2002,
67:
2702
<A NAME="RD26802ST-4C">4c</A>
Aspinall HC.
Greeves N.
J. Orgmet.
Chem.
2002,
647:
151
<A NAME="RD26802ST-4D">4d</A>
Wang ZG.
Fetterly B.
Verkade JG.
J. Orgmet. Chem.
2002,
646:
161
<A NAME="RD26802ST-4E">4e</A>
Tian S.-K.
Deng L.
J. Am. Chem. Soc.
2001,
123:
6195
<A NAME="RD26802ST-4F">4f</A>
Brunel JM.
Legrand O.
Buono G.
Tetrahedron: Asymmetry
1999,
10:
1979
<A NAME="RD26802ST-4G">4g</A>
Hwang CD.
Hwang DR.
Uang BJ.
J. Org. Chem.
1998,
63:
6762
<A NAME="RD26802ST-4H">4h</A>
Abiko A.
Wang G.-Q.
Tetrahedron
1998,
54:
11405
<A NAME="RD26802ST-4I">4i</A>
Zi GF.
Yin CL.
J. Mol. Catal. A: Chem.
1998,
132:
L1-L4
<A NAME="RD26802ST-4J">4j</A>
Mori M.
Imma H.
Nakai T.
Tetrahedron
Lett.
1997,
38:
6229
<A NAME="RD26802ST-4K">4k</A>
Iovel I.
Popelis Y.
Fleisher M.
Lukevics E.
Tetrahedron: Asymmetry
1997,
8:
1279
General review of bifunctional catalysts:
<A NAME="RD26802ST-5A">5a</A>
Rowlands GJ.
Tetrahedron
2001,
57:
1865
<A NAME="RD26802ST-5B">5b</A> Recent examples:
Casas J.
Nájera C.
Sansano JM.
Saá JM.
Org.
Lett.
2002,
4:
2589
<A NAME="RD26802ST-5C">5c</A> Also see:
Gröger H.
Chem.-Eur. J.
2001,
7:
5247
<A NAME="RD26802ST-5D">5d</A> Examples on the related
addition to imines:
Liu B.
Feng X.
Chen F.
Zhang G.
Cui X.
Jiang Y.
Synlett
2001,
1551
<A NAME="RD26802ST-5E">5e</A> Also see:
Corey EJ.
Wang Z.
Tetrahedron
Lett.
1993,
34:
4001
<A NAME="RD26802ST-6A">6a</A>
Shen Y.
Feng X.
Li Y.
Zhang G.
Jiang Y.
Synlett
2002,
793
<A NAME="RD26802ST-6B">6b</A>
Shen Y.
Feng X.
Zhang G.
Jiang Y.
Synlett
2002,
1353
Recent examples and references therein:
<A NAME="RD26802ST-7A">7a</A>
Masumoto S.
Yabu K.
Kanai M.
Shibasaki M.
Tetrahedron Lett.
2002,
43:
2919
<A NAME="RD26802ST-7B">7b</A>
Kanai M.
Hamashima Y.
Takamura M.
Shibasaki M.
J. Synth. Org. Chem. Jpn.
2001,
59:
766
<A NAME="RD26802ST-7C">7c</A>
Shibasaki M.
Kanai M.
Chem. Pharm. Bull.
2001,
49:
511
<A NAME="RD26802ST-8A">8a</A>
Deng H.
Isler MR.
Snapper ML.
Hoveyda AH.
Angew. Chem. Int. Ed.
2002,
41:
1009
<A NAME="RD26802ST-8B">8b</A> Mechanistic studies on
the related addition to imines:
Josephsohn NS.
Kuntz KW.
Snapper ML.
Hoveyda AH.
J.
Am. Chem. Soc.
2001,
123:
11594
<A NAME="RD26802ST-9A">9a</A>
Belokon’ YN.
Gutnov AV.
Moskalenko MA.
Yashkina LV.
Lesovoy DE.
Ikonnikov NS.
Larichev VS.
North M.
Chem.
Commun.
2002,
244
<A NAME="RD26802ST-9B">9b</A>
Belokon" YN.
Green B.
Ikonnikov NS.
North M.
Parsons T.
Tararov VI.
Tetrahedron
2001,
57:
771
<A NAME="RD26802ST-10A">10a</A>
Pelotier B.
Anson MS.
Campbell IB.
Macdonald SJF.
Priem G.
Jackson RFW.
Synlett
2002,
1055
<A NAME="RD26802ST-10B">10b</A>
Massa A.
Lattanzi A.
Siniscalchi FR.
Scettri A.
Tetrahedron: Asymmetry
2001,
12:
2775
<A NAME="RD26802ST-10C">10c</A>
Brinksma J.
La Crois R.
Feringa BL.
Donnoli MI.
Rosini C.
Tetrahedron
Lett.
2001,
42:
4049
<A NAME="RD26802ST-10D">10d</A>
Procter DJ.
J. Chem. Soc., Perkin Trans. 1
2001,
335
<A NAME="RD26802ST-11A">11a</A>
Cogan DA.
Liu G.
Ellman J.
Tetrahedron
1999,
55:
8883
<A NAME="RD26802ST-11B">11b</A>
Huang ZC.
Liao DZ.
Zhang RH.
Zhang XL.
Huang TS.
Wang HM.
Polyhedron
1996,
15:
981
<A NAME="RD26802ST-11C">11c</A>
Carreño MC.
Chem. Rev.
1995,
95:
1717
<A NAME="RD26802ST-12A">12a</A>
Ordoñez M.
Guerrero de la Rosa V.
Labastida V.
Llera JM.
Tetrahedron: Asymmetry
1996,
7:
2675
<A NAME="RD26802ST-12B">12b</A>
Owens TD.
Hollander FJ.
Oliver AG.
Ellman JA.
J.
Am. Chem. Soc.
2001,
123:
1539
<A NAME="RD26802ST-13">13</A>
Priego J.
Mancheño OG.
Cabrera S.
Carretero JC.
J. Org.
Chem.
2002,
67:
1346
<A NAME="RD26802ST-14A">14a</A>
Watanabe K.
Hirasawa T.
Hiroi K.
Chem. Pharm. Bull.
2002,
50:
372
<A NAME="RD26802ST-14B">14b</A>
Hiroi K.
Watanabe K.
Abe I.
Koseki M.
Tetrahedron Lett.
2001,
42:
7617
<A NAME="RD26802ST-14C">14c</A>
Hiroi K.
Suzuki Y.
Abe I.
Kawagishi R.
Tetrahedron
2000,
56:
4701
<A NAME="RD26802ST-15A">15a</A>
Priego J.
Mancheño OG.
Cabrera S.
Carretero JC.
Chem. Commun
2001,
2026
<A NAME="RD26802ST-15B">15b</A>
Chelucci G.
Berta D.
Saba A.
Tetrahedron
1997,
53:
3843
<A NAME="RD26802ST-15C">15c</A>
Carreño MC.
Ruano JLG.
Maestro MC.
Cabrejas LMM.
Tetrahedron: Asymmetry
1993,
4:
727
<A NAME="RD26802ST-16">16</A>
Gritzner G.
J.
Mol. Liq.
1997,
73-74:
487
<A NAME="RD26802ST-17A">17a</A>
Hellwig J.
Belser T.
Müller JFK.
Tetrahedron
Lett.
2001,
42:
5417
<A NAME="RD26802ST-17B">17b</A>
Denmark SE.
Wynn T.
J. Am. Chem. Soc.
2001,
123:
6199
<A NAME="RD26802ST-17C">17c</A>
Denmark SE.
Stavenger RA.
Acc.
Chem. Res.
2000,
33:
432
<A NAME="RD26802ST-18A">18a</A>
Iwasaki F.
Onomura O.
Mishima K.
Maki T.
Matsumura Y.
Tetrahedron Lett.
1999,
40:
7507
<A NAME="RD26802ST-18B">18b</A>
Iseki K.
Mizuno S.
Kuroki Y.
Kobayashi Y.
Tetrahedron Lett.
1998,
39:
2767
Examples of the sila-Pummerer rearrangement:
<A NAME="RD26802ST-19A">19a</A>
Bhupathy M.
Cohen T.
Tetrahedron Lett.
1987,
28:
4793
<A NAME="RD26802ST-19B">19b</A>
Iwao M.
Heterocycles
1994,
38:
45
<A NAME="RD26802ST-19C">19c</A> Examples of silicon initiated
Pummerer reaction:
Magnus P.
Mitchell IS.
Tetrahedron Lett.
1998,
39:
9131
<A NAME="RD26802ST-19D">19d</A> Also see:
Padwa A.
Waterson AG.
Tetrahedron
2000,
56:
10159
<A NAME="RD26802ST-20">20</A>
Bolm C.
Weickhardt K.
Zehnder M.
Glasmacher D.
Helv. Chim. Acta
1991,
74:
717
<A NAME="RD26802ST-21A">21a</A>
Helmchen G.
Pfaltz A.
Acc.
Chem. Res.
2000,
33:
336
<A NAME="RD26802ST-21B">21b</A>
Johnson JS.
Evans DA.
Acc.
Chem. Res.
2000,
33:
325
<A NAME="RD26802ST-21C">21c</A>
Ghosh AK.
Mathivanan P.
Cappiello J.
Tetrahedron: Asymmetry
1998,
9:
1
<A NAME="RD26802ST-22">22</A>
McKennon MJ.
Meyers AI.
Drauz K.
Schwarm M.
J. Org. Chem.
1993,
58:
3568
<A NAME="RD26802ST-23">23</A>
Aggarwal VK.
Bell L.
Coogan MP.
Jubault P.
J. Chem. Soc., Perkin Trans.
1
1998,
2037
<A NAME="RD26802ST-24">24</A>
Nitrile 3 was
accessible from 3,5-di-tert-butyl-2-hydroxybenzaldehyde
in 3 steps.
<A NAME="RD26802ST-25">25</A>
Hayashi M.
Inoue T.
Miyamoto Y.
Oguni N.
Tetrahedron
1994,
50:
4385
<A NAME="RD26802ST-26">26</A>
Pastuszak JJ.
Chimiak A.
J. Org. Chem.
1981,
46:
1868
<A NAME="RD26802ST-27">27</A>
Sulfoxide (S
S)-7: 1H NMR (300 MHz,
CDCl3) 12.21 (1 H, br s,), 7.53 (1 H, d, J = 1.5 Hz), 7.44 (1 H, d, J = 2.5 Hz), 4.93-4.82
(1 H, m), 4.61 (1 H, t, J = 9.5
Hz), 4.29 (1 H, t, J 9.0 Hz), 2.84 (1 H, dd, J = 12.5
Hz, 6.5 Hz), 2.68 (1 H, dd, J = 12.5
Hz, 7.5 Hz), 1.42 (9 H, s), 1.28 (9 H, s), 1.26 (9 H, s); 13C
NMR (75 MHz, CDCl3) 167.7 (C), 157.3 (C), 140.7 (C), 137.0
(C), 128.9 (CH), 122.8 (CH), 109.7 (C), 71.9 (CH2), 62.2
(CH), 53.8 (C), 51.4 (CH2), 35.5 (C), 34.7 (C), 31.9 (CH3),
29.8 (CH3), 23.2 (CH3); MS (EI) m/z = 393, 337, 322, 274,
250, 217, 205, 149, 57.
Sulfoxide (R
S)-7: 1H NMR (300 MHz,
CDCl3) 12.15 (1 H, s), 7.52 (1 H, d, J = 2.5
Hz), 7.42 (1 H, d, J = 2.5 Hz),
4.91-4.81 (1 H, m), 4.58 (1 H, t, J = 9.0
Hz), 4.40 (1 H, dd, J = 9.0 Hz,
7.0 Hz), 3.00 (1 H, dd, J = 12.5
Hz, 3.5 Hz), 2.59 (1 H, dd, J = 12.5
Hz, 10.0 Hz), 1.40 (9 H, s), 1.27 (9 H, s), 1.25 (9 H, s); 13C
NMR (75 MHz, CDCl3) 167.9 (C), 157.2 (C), 140.7 (C),
137.1 (C), 128.9 (CH), 122.7 (CH), 109.5 (C), 71.0 (CH2),
61.4 (CH), 54.1 (C), 51.1 (CH2), 35.5 (C), 34.7 (C),
31.9 (CH3), 29.8 (CH3), 23.1 (CH3).
<A NAME="RD26802ST-28">28</A>
Typical procedure: Ti(i-PrO)4 (0.013 mL, 0.04 mmol,
0.09 equiv) was added to a solution of (S
S)-7 (0.018 g, 0.05 mmol, 0.1 equiv) in CH2Cl2 (0.78
mL) at room temperature. The resultant pale yellow solution was
stirred at room temperature for 1 hour whereupon it was cooled to -78 °C. Benzaldehyde
(0.049 mL, 0.47 mmol, 1.0 equiv) was added and the solution stirred
for a further 30 min. TMSCN (0.095 mL, 0.71 mmol, 1.5 equiv) was
then added and the reaction vessel transferred to a -84 °C
freezer for 60 h. HCl(aq) (3 M; 3 mL) was added and
the mixture vigorously stirred at room temperature for 2 h. The
layers were separated and the aqueous phase extracted with CH2Cl2 (3 × 5
mL). The combined organic layers were dried (MgSO4) and concentrated.
The cyanohydrin 9 was isolated by column chromatography
(petroleum ether:ether, 3:1).
<A NAME="RD26802ST-29">29</A>
At -84 °C there
was no reaction between benzaldehyde and TMSCN in the presence of
either 10% Ti(i-PrO)4 or
10% Ti(i-PrO)4 + 10% DMSO
after 48 h. On warming to -20 °C complete reaction
was observed in the presence of just 10% Ti(i-PrO)4 in 12 h whilst the
reaction had only gone to 60% completion in the presence
of 10% Ti(i-PrO)4 + 10% DMSO over
the same period. Again this indicates that the ligand is essential
for activity. The decrease in the rate of reaction in the presence
of DMSO could possibly be the result of the formation of a coordinatively
saturated octahedral complex with resultant loss in Lewis acidity.
This would require two equivalents of DMSO per titanium centre thus
resulting in only 5% active catalyst being present. Stoichiometry
of the catalyst has already been shown to effect the rate (Table
[1]
; entry 6).
<A NAME="RD26802ST-30">30</A>
Three aluminium complexes were studied
in cyanosilylation reaction of benzaldehyde. One formed from 2,2′-biphenol gave
58% conversion, one with a phenyl sulfone substituent in
the ortho position of 2,2′-biphenol
gave 75% conversion whilst the phenyl sulfoxide substituted
2,2′-biphenol gave 92% conversion. This suggests
that the sulfoxide is activating the TMSCN and that it is not purely
an electronic effect making the aluminium centre more Lewis acidic. Work
to convert this to a chiral system is currently underway.
<A NAME="RD26802ST-31">31</A>
Braunstein P.
Naud F.
Angew. Chem. Int. Ed.
2001,
40:
680
<A NAME="RD26802ST-32">32</A> The use of sulfoxides as Lewis
base catalysts for allylations:
Kentish-Barnes W.
D.
Phil. Thesis
The University of Sussex;
UK:
2002.