RSS-Feed abonnieren
DOI: 10.1055/s-2003-37533
Synthesis of JKLM Ring Fragment of Ciguatoxin via Acetylene-Cobalt Strategy
Publikationsverlauf
Publikationsdatum:
26. Februar 2003 (online)

Abstract
A stereoselective synthesis of the JKLM ring fragment has been achieved through a coupling between two segments via heteroconjugate addition, seven-membered ether ring formation mediated by an acetylene cobalt complex and spiroketalization reaction.
Key words
acetylene cobalt complex - reductive decomplexation - heteroconjugate addition - medium sized ring - ciguatoxin
-
1a
Scheuer PJ.Takahashi W.Tsutsumi J.Yoshida T. Science 1967, 155: 1267 -
1b
Murata M.Legurand AM.Ishibashi Y.Fukui M.Yasumoto T. J. Am. Chem. Soc. 1990, 112: 4380 -
1c
Satake M.Morohashi A.Oguri H.Oishi T.Hirama M.Harada N.Yasumoto T. J. Am. Chem. Soc. 1997, 119: 11325 -
1d
Yasumoto T. Chem. Rec. 2001, 1: 228 - The first total synthesis was reported:
-
2a
Hirama M.Oishi T.Uehara H.Inoue M.Maruyama M.Oguri H.Satake M. Science 2001, 294: 1904 -
2b
Inoue M.Uehara H.Maruyama M.Hirama M. Org. Lett. 2002, 4: 4551 - For synthetic studies of the right part of ciguatoxin from other groups, see:
-
3a
Uehara H.Oishi T.Inoue M.Shoji M.Nagumo Y.Kosaka M.Brazidec J.-YL.Hirama M. Tetrahedron 2002, 58: 6493 -
3b
Takakura H.Sasaki M.Honda S.Tachibana K. Org. Lett. 2002, 4: 2771 -
3c
Fujiwara K.Takaoka D.Kusumi K.Kawai K.Murai A. Synlett 2001, 691 -
3d
Oka T.Murai A. Tetrahedron 1998, 54: 1 ; and references therein -
4a
Hosokawa S.Isobe M. J. Org. Chem. 1999, 64: 37 -
4b
Saeeng R.Isobe M. Heterocycles 2001, 54: 789 -
5a
Kira K.Isobe M. Tetrahedron Lett. 2001, 42: 2821 -
5b
Kira K.Isobe M. Tetrahedron Lett. 2000, 41: 5951 -
5c
Kira K.Hamajima A.Isobe M. Tetrahedron 2002, 58: 1875 - 6
Takai S.Isobe M. Org. Lett. 2002, 4: 1183 -
7a
Liu T.-Z.Isobe M. Synlett 2000, 266 -
7b
Liu T.-Z.Isobe M. Synlett 2000, 587 -
7c
Liu T.-Z.Li J.-M.Isobe M. Tetrahedron 2000, 56: 5391 - 8
Tomic-Kulenovic S.Keglevic D. Carbohydr. Res. 1980, 85: 302 -
9a
Graham AE.Thomas AV.Yang R. J. Org. Chem. 2000, 65: 2583 -
9b
Barton DHR.McCombie J. J. Chem. Soc., Perkin Trans. 1 1975, 1574 - 10
Lewis MD.Cha JK.Kishi Y. J. Am. Chem. Soc. 1982, 104: 4976 - 11
Nicolaou KC.Nugiel DA.Couladouros E.Hwang C.-K. Tetrahedron 1990, 46: 4517 - 12
Corey EJ.Fuchs PL. Tetrahedron Lett. 1972, 3769 -
13a
Isobe M.Nishizawa R.Nishikawa T.Yoza K. Tetrahedron Lett. 1999, 40: 6927 -
13b
Jiang Y.Isobe M. Tetrahedron 1996, 52: 2877 - 15
Smith AB.Condon SM.McCauley JA.Leazer JL.Leahy JW.Maleczka RE. J. Am. Chem. Soc. 1997, 119: 947 - 17
Hosokawa S.Isobe M. Tetrahedron Lett. 1998, 39: 2609 - 18 Bis(trimethylsilyl)acetylene was
added to prevent isomerization of the terminal olefin to the inner
olefin. For the detail of bis(trimethylsilyl)-acetylene effect in
the reductive decomplexation, see:
Kira K.Tanda H.Hamajima A.Baba T.Takai S.Isobe M. Tetrahedron 2002, 58: 6485 -
19a
Hartman C.Meyer V. Chem. Ber. 1983, 26: 1727 -
19b
Frigerio M.Santagostino M.Sputore S. J. Org. Chem. 1999, 64: 4537 - 20
Sharpless KB.Amberg W.Bennani YL.Crispino GA.Hartung J.Jeong K.-S.Kwong H.-L.Morioka K.Wang Z.-M.Xu D.Zhang X.-L. J. Am. Chem. Soc. 1992, 57: 2768
References
Physical data for 8. 1H
NMR (CDCl3, 300 MHz) d 0.58-0.88 [15
H, m, -Si(CH
2
CH
3
)3],
1.47 (1 H, q, J = 11.5 Hz, H-43a), 2.16
(1 H, m, allylic), 2.55 (1 H, m, allylic), 2.73 (1 H, dt,
J = 12.0 Hz, 4.5 Hz,
H-43b), 3.01 (1 H, d, J = 9.0
Hz, -OH), 3.11-3.27 (2 H, m,
H-41, 42), 3.34 (1 H, m, H-44), 4.45 (1 H, d, J = 11.5
Hz, -OCH
2
Ph),
4.63 (1 H, d, J = 11.5 Hz,
-OCH
2
Ph),
4.68 (1 H, ddd, J = 11.5 Hz,
9.5 Hz, 4.5 Hz, H-44), 4.76 (1 H, t, J = 9.0
Hz, H-45), 4.97-5.05 (2 H, m, olefinic), 5.68-5.83
(1 H, m, olefinic), 6.40 (1 H, d, J = 9.0 Hz,
H-46), 7.26-7.40 (5 H, m, aromatic), 7.48-7.63
(3 H, m, aromatic), 7.83-7.90 (2 H, m, aromatic).
Physical data for 15. 1H NMR (CDCl3, 300M Hz) d 0.00-0.08 [6 H, m, -Si(CH 3 )2 t-Bu], 0.86-1.03 [15 H, m, -Si(CH3)2 t-Bu, CH 3 -59, CH 3 -60], 1.62-1.99 (4 H, m, H-50, 51, 53a, 53b), 2.36-2.45 (1 H, m, H-47), 3.32-3.40 (3 H, m, -OCH 3 ), 3.48-4.06 (5 H, m, H-49, 52, 54, 55a, 55b), 3.83 (3 H, s, -OC6H4OCH 3 ), 4.49-4.76 (4 H, m, -OCH 2 Ar), 6.90 (2 H, br d, J = 8.0 Hz, aromatic), 7.27-7.39 (7 H, m, aromatic).
21Physical data for 26.
IR (KBr) 3447, 2926, 1717, 1636, 1456, 1355, 1077, 1025, 938, 739,
698, 419 cm-1. 1H
NMR (CDCl3, 400 MHz) d 1.01 (3 H, d, J = 6.5
Hz, CH
3
-60),
1.06 (3 H, d, J = 6.5 Hz, CH
3
-59),
1.12 (3 H, d, J = 7.5 Hz, CH
3
-58),
1.40 (1 H, q, J = 11.5 Hz, H-43a),
1.48 (1 H, dq, J = 11.0 Hz,
6.5 Hz, H-51), 1.61 (1 H, ddq, J = 11.0
Hz, 10.0 Hz, 6.5 Hz, H-50), 2.00 (1 H, qdd, J = 7.5
Hz, 5.0 Hz, 3.5 Hz, H-46), 2.08 (1 H, dd, J = 14.0
Hz, 4.0 Hz, H-53a), 2.13 (1 H, dd,
J = 14.0
Hz, 6.5 Hz, H-53b), 2.45 (1 H, dd, J = 15.5
Hz, 9.0 Hz, H-40a), 2.54 (1 H, dt, J = 12.0
Hz, 4.5 Hz, H-43), 2.79 (1 H, dd, J = 15.5
Hz, 3.5 Hz, H-40b), 1.61 (1 H, ddq, J = 11.0
Hz, 10.0 Hz, 6.5 Hz, H-50), 2.95 (1 H, dd, J = 9.5
Hz, 5.0 Hz, H-45), 3.15 (1 H, ddd, J = 11.5
Hz, 9.0 Hz, 4.5 Hz, H-42), 3.26 (1 H, t, J = 9.5
Hz, H-49), 3.59 (1 H, td, J = 9.0 Hz,
3.5 Hz, H-41), 3.62 (1 H, dd, J = 9.5
Hz, 2.0 Hz, H-48), 3.65 (1 H, dd, J = 3.5
Hz, 2.0 Hz, H-47), 3.69 (1 H, ddd, J = 11.5
Hz, 9.5 Hz, 4.5 Hz, H-44), 3.85 (1 H, dd, J = 9.5
Hz, 5.0 Hz, H-55a), 3.96 (1 H, dd, J = 9.5
Hz, 2.0 Hz, H-55b), 4.26 (1 H, dddd, J = 6.5
Hz, 5.0 Hz, 4.0 Hz, 2.0 Hz, H-54), 4.39 (2 H, d, J = 11.5
Hz, -OCH
2Ph), 4.45 (2 H, d, J = 12.0 Hz,
-OCH
2Ph), 4.47 (2 H, d, J = 12.0 Hz, -OCH
2Ph), 4.63 (2 H, d, J = 11.5 Hz, -OCH
2Ph), 7.20-7,37
(10 H, m, aromatic). ESI Q-TOF MS calcd for C35H47O8 595.327 [M + H]+,
found 595.336.