Plant Biol (Stuttg) 2003; 5(1): 16-22
DOI: 10.1055/s-2003-37975
Review Article
Georg Thieme Verlag Stuttgart ·New York

MADS-Box Genes Controlling Flower Development in Rice

F. Fornara 1 , G. Marziani 1 , L. Mizzi 2 , M. Kater 2 , L. Colombo 1
  • 1 Università di Milano, Dipartimento di Biologia, Sezione di Botanica Generale, Via Celoria 26, 20133 Milano, Italy
  • 2 Università di Milano, Dipartimento di Genetica e Biologia dei Microrganismi, Via Celoria 26, 20133 Milano, Italy
Further Information

Publication History

Received: August 22, 2002

Accepted: December 4, 2002

Publication Date:
18 March 2003 (online)

Abstract

The separation between monocot and dicot plants occurred about 120 - 180 million years ago and since then major morphological changes have led to the striking differences that can be observed today. To understand whether, despite these differences, the processes controlling flower development are fundamentally comparable in dicot and monocot species, it is necessary to perform comparative studies. However, until recently flower development has been studied mainly in dicot plant species. Genetic and molecular analyses of two dicot model species, Arabidopsis thaliana and Antirrhinum majus, led to the formulation of the ABC model of flower development that describes how the combined activities of three classes of genes are required to drive flower organ development. This model has recently been extended by the inclusion of two other gene classes, namely D and E, which are involved in ovule development, and petal, stamen and carpel development, respectively. Most of the A, B, C, D and E genes identified so far have been shown to encode MADS-box transcription factors. In rice a number of regulatory genes belonging to the MADS-box transcription factor family have been cloned in the last few years and the functions of some of them have been investigated in detail. Here we review the current state of knowledge on rice flower development and focus on MADS-box genes that determine floral organ identity in this species. We compare results obtained in rice with the information known for Arabidopsis and the differences between these two species are discussed.

References

  • 01 Ambrose,  B A.,, Lerner,  D. R.,, Ciceri,  P.,, Padilla,  C. M.,, Yanofsky,  M. F.,, and Schmidt,  R. J.. (2000);  Molecular and genetic analyses of the Silky1 gene reveal conservation in floral organ specification between eudicots and monocots.  Molecular Cell.. 5 569-579
  • 02 Angenent,  G. C.,, Busscher,  M.,, Franken,  J.,, Mol,  J. N. M.,, and van Tunen,  A.. (1992);  Differential expression of two MADS box genes in wild-type and mutant Petunia flowers.  The Plant Cell. 4 983-993
  • 03 Angenent,  G. C.,, Franken,  J.,, Busscher,  M.,, van Dijken,  A.,, van Went,  J. L.,, Dons,  H. J. M.,, and van Tunen,  A. J.. (1995);  A novel class of MADS box genes is involved in ovule development in Petunia. .  The Plant Cell. 7 1569-1582
  • 04 Bowman,  J. L.,, Drews,  G. N.,, and Meyerowitz,  E. M.. (1991);  Expression of the Arabidopsis floral homeotic gene AGAMOUS is restricted to specific cell types late in flower development.  The Plant Cell. 3 749-758
  • 05 Bradley,  D.,, Carpenter,  R.,, Sommer,  H.,, Hartley,  N.,, and Coen,  E.. (1993);  Complementary floral homeotic phenotypes result from opposite orientations of a transposon at the plena locus of Antirrhinum. .  Cell. 72 85-95
  • 06 Chung,  Y.-Y.,, Kim,  S.-R.,, Finkel,  D.,, Yanofsky,  M. F.,, and An,  G.. (1994);  Early flowering and reduced apical dominance result from ectopic expression of a rice MADS-box gene.  Plant Mol. Biol.. 26 657-665
  • 07 Chung,  Y.-Y.,, Kim,  S.-R.,, Kang,  H.-G.,, Noh,  Y. S.,, Park,  M. C.,, Finkel,  D.,, and An,  G.. (1995);  Characterization of two rice MADS-box genes homologous to GLOBOSA.  Plant Sci.. 109 45-56
  • 08 Coen,  E. S., and Meyerowitz,  E. M.. (1991);  The war of the whorls: genetic interactions controlling flower development.  Nature. 5 31-37
  • 09 Colombo,  L.,, Franken,  J.,, Koetje,  E.,, van Went,  J.,, Dons,  H. J. M.,, Angenent,  G. C.,, and van Tunen,  A.. (1995);  The Petunia MADS box gene FBP11 determines ovule identity.  The Plant Cell. 7 1859-1868
  • 10 Davies,  B., and Schwarz-Sommer,  Z.. (1994) Control of floral organ identity by homeotic MADS box transcription factor. Results Probl. Cell. Differ. Nover, L., ed. Berlin; Springer pp. 235-258
  • 11 Davies,  B.,, Rosa,  A.,, Eneva,  T.,, Saedler,  H.,, and Sommer,  H.. (1996);  Alteration of tobacco floral organ identity by expression of combinations of Antirrhinum MADS-box genes.  Plant Journal. 10 663-677
  • 12 Favaro,  R.,, Immink,  R. G. H.,, Ferioli,  V.,, Bernasconi,  B.,, Byzova,  M.,, Angenent,  G. C.,, Kater,  M.,, and Colombo,  L.. (2002);  Ovule specific MADS-box proteins have conserved protein-protein interactions in monocot and dicot plants.  Mol. Gen. Genomics. 268 152-159
  • 13 Goto,  K., and Meyerowitz,  E. M.. (1994);  Function and regulation of the Arabidopsis floral homeotic gene PISTILLATA.  Genes Dev.. 8 1548-1560
  • 14 Greco,  R.,, Stagi,  L.,, Colombo,  L.,, Agenent,  G. C.,, Sari-Gorla,  M.,, and Pè,  M. E.. (1997);  MADS-box genes expressed in developing inflorescences of rice and sorghum.  Mol. Gen. Genet.. 253 615-623
  • 15 Gustafson-Brown,  C.,, Savidge,  B.,, and Yanofsky,  M. F.. (1994);  Regulation of the Arabidopsis floral homeotic gene Apetala1. .  Cell. 76 131-143
  • 16 Gutierrez-Cortines,  M. E., and Davies,  B.. (2000);  Beyond the ABCs: ternary complex formation in the control of floral organ identity.  Trends Plant Sci.. 5 471-476
  • 17 Honma,  T., and Goto,  K.. (2001);  Complexes of MADS-box proteins are sufficient to convert leaves into floral organs.  Nature. 409 525-529
  • 18 Jack,  T.,, Brockman,  L. L.,, and Meyerowitz,  E. M.. (1992);  The homeotic gene APETALA3 of Arabidopsis thaliana encodes a MADS-box and is expressed in petals and stamens.  Cell. 68 683-697
  • 19 Jeon,  J.-S.,, Jang,  S.,, Lee,  S.,, Nam,  J.,, Kim,  C.,, Lee,  S.-H.,, Chung,  Y.-Y.,, Kim,  S.-R.,, Lee,  Y. H.,, Cho,  Y.-G.,, and An,  G.. (2000);  leafy hull sterile1 is a homeotic mutation in a rice MADS-box gene affecting rice flower development.  The Plant Cell. 12 871-884
  • 20 Jia,  H.-W.,, Chen,  R.,, Cong,  B.,, Cao,  K.-M.,, Sun,  C.-R.,, and Luo,  D.. (2000);  Characterization and transcriptional profiles of two rice MADS-box genes.  Plant Sci.. 155 115-122
  • 21 Jofuku,  K. D.,, den Boer,  B. G. W.,, Van Montagu,  M.,, and Okamuro,  J. K.. (1994);  Control of Arabidopsis flower and seed development by the homeotic gene APETALA2. .  The Plant Cell. 6 1211-1225
  • 22 Kang,  H.-G., and An,  G.. (1997);  Isolation and characterization of rice MADS-box gene belonging to the AGL2 gene family.  Mol. Cell. 7 45-51
  • 23 Kang,  H.-G.,, Jang,  S.,, Chung,  J.-E.,, Cho,  Y.-G.,, and An,  G.. (1997);  Characterization of two rice MADS box genes that control flowering time.  Mol. Cells. 7 559-566
  • 24 Kang,  H.-G.,, Jong-Seong,  J.,, Lee,  S.,, and An,  G.. (1998);  Identification of class B and class C organ identity genes from rice plants.  Plant Mol. Biol.. 38 1021-1029
  • 25 Kang,  H.-G.,, Noh,  Y. S.,, Chung,  Y.-Y.,, Costa,  M. A.,, An,  K.,, and An,  G.. (1995);  Phenotypic alterations of petal and sepal by ectopic expression of a rice MADS-box gene in tobacco.  Plant Mol. Biol.. 29 1-10
  • 26 Krizek,  B. A., and Meyerowitz,  E. M.. (1996);  Mapping the protein regions responsible for the functional specificities of the Arabidopsis MADS domain organ-identity proteins.  PNAS. 93 4063-4070
  • 27 Kyozuka,  J., and Shimamoto,  K.. (2002);  Ectopic expression of OsMADS3, a rice ortholog of AGAMOUS, caused a homeotic transformation of lodicules to stamens in transgenic rice plants.  Plant Cell. Physiol.. 43 130-135
  • 28 Kyozuka,  J.. (1999) Flower development in rice. Molecular Biology of Rice. Shimamoto, K., ed. Tokyo; Springer-Verlag pp. 43-58
  • 29 Kyozuka,  J.,, Kobayashi,  T.,, Morita,  M.,, and Shimamoto,  K.. (2000);  Spatially and temporally regulated expression of rice MADS-box genes with similarity to Arabidopsis class A, B and C genes.  Plant Cell Physiol.. 41 710-718
  • 30 Lim,  J.,, Moon,  Y. H., An,  G.,, and Jang,  S. K.. (2000);  Two rice MADS domain proteins interact with OsMADS1.  Plant Mol. Biol.. 44 513-527
  • 31 Lopez-Dee,  Z. P.,, Wittich,  P.,, Pè,  M. E.,, Rigola,  D.,, Del Buono,  I.,, Sari-Gorla,  M.,, Kater,  M. M.,, and Colombo,  L.. (1999);  OsMADS13, a novel rice MADS-box gene expressed during ovule development.  Dev. Gen.. 25 237-244
  • 32 Masiero,  S.,, Imbriano,  C.,, Ravasio,  F.,, Favaro,  R.,, Pelucchi,  N.,, Sari Gorla,  M.,, Mantovani,  R. M.,, Colombo,  L.,, and Kater,  M. M.. (2002);  Ternary complex formation between MADS-box transcription factors and the histone fold protein NF-YB.  J. Biol. Chem.. 277 26429-26435
  • 33 Mena,  M.,, Mandel,  M. A.,, Lerner,  D. R.,, Yanofsky,  M. F.,, and Schmidt,  R. J.. (1995);  A characterization of the MADS-box gene family in maize.  Plant J.. 8 845-854
  • 34 Moon,  Y.-H.,, Jung,  J.-Y.,, Kang,  H.-G.,, and An,  G.. (1999 a);  Identification of a rice APETALA3 homologue by yeast two-hybrid screening.  Plant Mol. Biol.. 40 167-177
  • 35 Moon,  Y.-H.,, Kang,  H.-G.,, Jung,  J.-Y.,, Jeon,  J.-S.,, Sung,  S.-K.,, and An,  G.. (1999 b);  Determination of the motif responsible for interaction between the rice APETALA1/AGAMOUS-LIKE9 family proteins using a yeast two-hybrid system.  Plant Physiol.. 120 1193-1204
  • 36 Münster,  T.,, Wingen,  L. U.,, Faigl,  W.,, Werth,  S.,, Saedler,  H.,, and Theißen,  G.. (2001);  Characterization of three GLOBOSA-like MADS-box genes from maize: evidence for ancient paralogy in one class of floral homeotic B-Function genes of grasses.  Gene. 262 1-13
  • 37 Norman,  C.,, Runswick,  M.,, Pollock,  R.,, and Treisman,  R.. (1988);  Isolation and properties of cDNA clones encoding SRF, a transcription factor that binds to the c-fos serum response element.  Cell. 55 989-1003
  • 38 Passmore,  S.,, Maine,  G. T.,, Elble,  R.,, Christ,  C.,, and Tye,  B.-K.. (1988);  A Saccharomyces cerevisiae protein involved in plasmid maintenance is necessary for mating of MATα cells.  J. Mol. Biol.. 204 593-606
  • 39 Pelaz,  S.,, Ditta,  G. S.,, Baumann,  E.,, Wisman,  E.,, and Yanofsky,  M. F.. (2000);  B and C floral organ identity functions require SEPALLATA MADS-box genes.  Nature. 405 200-202
  • 40 Pelucchi,  N.,, Fornara,  F.,, Favalli,  C.,, Masiero,  S.,, Lago,  C.,, Pè,  M. E.,, Colombo,  L.,, and Kater,  M. M.. (2002);  Comparative analysis of rice MADS-box genes expressed during flower development.  Sex. Plant Rep.. 15 113-122
  • 41 Pnueli,  L.,, Hareven,  D.,, Broday,  L.,, Hurwitz,  C.,, and Lifschitz,  E.. (1994);  The TM5 MADS box gene mediates organ differentiation in the three inner whorls of tomato flowers.  The Plant Cell. 6 175-186
  • 42 Prasad,  K.,, Sriram,  P.,, Kumar,  C. S.,, Kushalappa,  K.,, and Vijayraghavan,  U.. (2001);  Ectopic expression of rice OsMADS1 reveals a role in specifying the lemma and palea, grass organs analogous to sepals.  Dev. Genes Evol.. 211 281-290
  • 43 Schwarz-Sommer,  Z.,, Huijser,  P.,, Nacken,  W.,, Saedler,  H.,, and Sommer,  H.. (1990);  Genetic control of flower development by homeotic genes in Antirrhinum majus. .  Science. 250 931-936
  • 44 Sommer,  H.,, Beltrán,  J.-P.,, Huijser,  P.,, Pape,  H.,, Lönnig,  W.-E.,, Saedler,  H.,, and Schwarz-Sommer,  Z.. (1990);  Deficiens, a homeotic gene involved in the control of flower morphogenesis in Antirrhinum majus: the protein shows homology to transcription factors.  EMBO J.. 9 605-613
  • 45 Theißen,  G., and Saedler,  H.. (1999);  The golden decade of molecular floral development: a cheerful obituary.  Dev. Gen.. 25 181-193
  • 46 Theißen,  G.. (2001);  Development of floral organ identity: stories from the MADS house.  Curr. Opin. Plant Biol.. 4 75-85
  • 47 Theißen,  G.,, Strater,  T.,, Fischer,  A.,, and Saedler,  H.. (1995);  Structural characterization, chromosomal localization and phylogenetic evaluation of two pairs of AGAMOUS-like MADS-box genes from maize.  Gene. 156 155-166
  • 48 Tröbner,  W.,, Ramirez,  L.,, Motte,  P.,, Hue,  I.,, Huijser,  P.,, Lönnig,  W.-E.,, Saedler,  H.,, Sommer,  H.,, and Schwarz-Sommer,  Z.. (1992);  GLOBOSA: a homeotic gene which interacts with DEFICIENS in the control of Antirrhinum floral organogenesis.  EMBO J.. 11 4693-4704
  • 49 Western,  T. L., and Haughn,  G. W.. (1999);  BELL1 and AGAMOUS genes promote ovule identity in Arabidopsis thaliana. .  Plant J.. 18 329-336
  • 50 Yanofsky,  M. F.,, Ma,  H.,, Bowman,  J. L.,, Drews,  G N.,, Feldman,  K. A.,, and Meyerowitz,  E. M.. (1990);  The protein encoded by the Arabidopsis homeotic gene agamous resembles transcription factors.  Nature. 346 35-39

L. Colombo

Università di Milano
Dip. Biologia

Via Celoria 26
20133 Milano
Italy

Email: lucia.colombo@unimi.it

Section Editor: L. A. C. J. Voesenek

    >