References
<A NAME="RS04002ST-1A">1a</A>
Kaes C.
Katz A.
Hosseini MW.
Chem. Rev.
2000,
100:
3553
<A NAME="RS04002ST-1B">1b</A>
Constable EC.
Adv. Inorg. Chem.
1989,
34:
1
<A NAME="RS04002ST-2">2</A>
Ward MD.
J.
Chem. Soc., Dalton Trans.
1994,
3095
<A NAME="RS04002ST-3">3</A>
Ward MD.
McCleverty JA.
Jeffery JC.
Coord. Chem. Rev.
2001,
222:
251
<A NAME="RS04002ST-4">4</A>
Newkome GR.
Hager DC.
J. Org. Chem.
1982,
47:
599
<A NAME="RS04002ST-5">5</A>
Hanan GS.
Lehn J.-M.
Kyritsakas N.
Fischer J.
J. Chem. Soc., Chem. Commun.
1995,
765
<A NAME="RS04002ST-6">6</A>
Hanan GS.
Schubert US.
Volkmer D.
Riviere E.
Lehn J.-M.
Kyritsakas N.
Fischer J.
Can.
J. Chem.
1997,
75:
169
<A NAME="RS04002ST-7">7</A>
Bolm C.
Ewald M.
Felder M.
Schlingloff G.
Chem. Ber.
1992,
125:
1169
<A NAME="RS04002ST-8">8</A>
Deshayes K.
Broene RD.
Chao I.
Knobler CB.
Diederich F.
J.
Org. Chem.
1991,
56:
6787
<A NAME="RS04002ST-9">9</A>
Rottlander M.
Boymond L.
Berillon L.
Lepretre A.
Varchi G.
Avolio S.
Laaziri H.
Queguiner G.
Ricci A.
Cahiez G.
Knochel P.
Chem.-Eur.
J.
2000,
6:
767
<A NAME="RS04002ST-10">10</A>
Berillon L.
Lepretre A.
Turck A.
Ple N.
Queguiner G.
Cahiez G.
Knochel P.
Synlett
1998,
1359
<A NAME="RS04002ST-11">11</A>
Bonnet V.
Mongin F.
Trecourt F.
Queguiner G.
Knochel P.
Tetrahedron
Lett.
2001,
42:
5717
<A NAME="RS04002ST-12">12</A>
Trecourt F.
Gervais B.
Mallet M.
Queguiner G.
J. Org. Chem.
1996,
61:
1673
<A NAME="RS04002ST-13">13</A>
Knochel P.
Almena Perea JJ.
Jones P.
Tetrahedron
1998,
54:
8275
<A NAME="RS04002ST-14">14</A>
Zhu L.
Wehmeyer RM.
Rieke RD.
J.
Org. Chem.
1991,
56:
1445
<A NAME="RS04002ST-15">15</A>
Turck A.
Ple N.
Lepretre-Gaquere A.
Queguiner G.
Heterocycles
1998,
49:
205
<A NAME="RS04002ST-16">16</A>
Gros P.
Fort Y.
Synthesis
1999,
754
<A NAME="RS04002ST-17">17</A>
Savage SA.
Smith AP.
Fraser CL.
J. Org. Chem.
1998,
63:
10048
<A NAME="RS04002ST-18">18</A>
Khan MA.
Tuck DG.
Acta Cryst., Sect. C:
Cryst. Struct. Commun.
1984,
40:
60
<A NAME="RS04002ST-19">19</A>
General Procedure: A
flame-dried Schlenk tube was charged with Pd(PPh3)4 and
2-halopyridine under argon. 2-Pyridylzinc bromide (THF solution)
was then added by syringe. The mixture was stirred at r.t. for several
hours, and was poured into an aq EDTA/Na2CO3 solution.
After the precipitate had dissolved, the mixture was extracted with Et2O
(3 ¥ 50 mL), and dried over Na2SO4.
The solvent was evaporated and the residue was chromatographed on
an alumina column (neutral, Brockmann I) with 10:1 hexane:EtOAc.
<A NAME="RS04002ST-20">20</A>
Compound 3c: 1:
4.5 mmol; 2c: 2.91 mmol; Pd(PPh3)4: 0.06
mmol. Chromatographed with 10:1 hexane:EtOAc as eluent to yield
a colorless liquid. 1H NMR (300 MHz, CDCl3): δ = 8.64
(d, J = 4.8
Hz, 1 H, H6
′), 8.49 (d, J = 4.4 Hz,
1 H, H6), 7.80-7.73 (m, 2 H, H3
′
,4
′),
7.56 (d, J = 7.7
Hz, 1 H, H 4), 7.27-2.22 (m, 1 H, H5
′),
7.18 (d, J = 7.8,
4.7 Hz, 1 H, H5
′), 2.46 (s, 3 H,
Me). 13C NMR (75 MHz, CDCl3): δ = 159.0,
156.4, 148.6, 146.8, 139.2, 136.6, 132.3, 124.2, 123.1, 122.7, 20.0.
FAB/NBA: 171.1 [MH+]. Compounds 3d-f: 3.0 mmol scale
with 2 mol% Pd(PPh3)4, chromatographed
with 10:1 hexane:EtOAc. NMR spectra are identical to those previously
reported.
[30]
<A NAME="RS04002ST-21">21</A>
Pd2(dba)3 and
P(o-tolyl)3 or P(2-furyl)3 were
tested as catalysts giving conversions of less than 20% with
the same reaction conditions. Although recent results showed that Pd[P(t-Bu)3]2 is
a powerful catalyst for coupling a broad range of aryl chlorides
and organozinc halides,
[22]
the
cost and the availability of the catalyst are a concern.
<A NAME="RS04002ST-22">22</A>
Dai C.
Fu GC.
J. Am. Chem. Soc.
2001,
123:
2719
<A NAME="RS04002ST-23">23</A>
Compound 3g: 4.3
mmol scale with 3 mol% Pd(PPh3)4, chromatographed
with a hexane:EtOAc solvent gradient (10:1 to 3:1). 1H
NMR (500 MHz, CDCl3): δ = 8.80 (d, J = 4.9 Hz,
1 H), 8.68 (br, 2 H), 8.40 (d, J = 7.9
Hz, 1 H), 7.83 (td, J
t = 7.7
Hz, J
d = 1.5
Hz, 1 H), 7.49 (dd, J = 4.9,
1.2 Hz, 1 H), 7.35 (dd, J = 7.3,
4.9 Hz, 1 H). 13C NMR (75 MHz, CDCl3): δ = 157.6,
154.1, 150.1, 149.5, 137.3, 124.9, 124.8, 123.0, 121.4. 121.3, 116.8. Compound 3h: 1.0 mmol scale with 3 mol% Pd(PPh3)4.
Extracted with CH2Cl2 and chromatographed
with a hexane:EtOAc solvent gradient (10:1 to 3:1 to 1:1). Mp: 174-175 °C
(EtOH). 1H NMR (300 MHz, CDCl3): δ = 9.42
(s, 1 H), 9.08 (s, 2 H), 8.84 (d, J = 5.0 Hz,
1 H), 8.75 (d, J = 4.6
Hz, 1 H), 8.43 (d, J = 7.9
Hz, 1 H), 8.33 (d, J = 4.1
Hz, 1 H), 7.83 (t, J = 7.7
Hz, 1 H), 7.64 (d, J = 7.7
Hz, 2 H, Ph), 7.56-7.45 (m, 3 H, Ph), 7.32 (dd, J = 7.4, 4.8
Hz, 1 H). 13C NMR (75 MHz, CDCl3): δ = 161.7, 157.2,
156.1, 155.4, 150.1, 149.5, 145.7, 137.0, 134.2, 133.2, 129.6, 129.2,
127.0, 123.9, 121.9, 121.2, 119.7. FAB/NBA: 311.1 [MH+]. Compound 3i: 3.0 mmol scale with 2 mol% Pd(PPh3)4,
chromatographed with 13:1 hexane:EtOAc. NMR spectra are identical
to those previously reported.24
<A NAME="RS04002ST-24">24</A>
Wakabayashi S.
Tanaka T.
Kubo Y.
Uenishi J.
Oae S.
Bull. Chem.
Soc. Jpn.
1989,
62:
3848
<A NAME="RS04002ST-25">25</A>
Fang Y.-Q.
Taylor NJ.
Hanan GS.
Loiseau F.
Passalaqua R.
Campagna S.
J. Am.
Chem. Soc.
2002,
124:
7912
<A NAME="RS04002ST-26">26</A>
Compound 5: 3.0
mmol scale with 2 mol% Pd(PPh3)4, chromatographed
with 10:1 hexane:EtOAc. NMR spectra are identical to those previously
reported.6
<A NAME="RS04002ST-27">27</A>
Compound 8: 2.0
mmol scale with 3 mol% Pd(PPh3)4, chromatographed
with 10:1 hexane:EtOAc. NMR spectra are identical to those previously
reported.28
<A NAME="RS04002ST-28">28</A>
Romero FM.
Ziessel R.
Tetrahedron Lett.
1995,
36:
6471
<A NAME="RS04002ST-29A">29a</A>
Hanan GS.
Volkmer D.
Schubert US.
Lehn J.-M.
Baum G.
Fenske D.
Angew.
Chem., Int. Ed. Engl.
1997,
36:
1842
<A NAME="RS04002ST-29B">29b</A>
Hanan GS.
Arana CR.
Lehn J.-M.
Fenske D.
Angew.
Chem., Int. Ed. Engl.
1995,
34:
1122
<A NAME="RS04002ST-29C">29c</A>
Ceroni P.
Credi A.
Balzani V.
Campagna S.
Hanan GS.
Arana CR.
Lehn J.-M.
Eur.
J. Inorg. Chem.
1999,
1409
<A NAME="RS04002ST-29D">29d</A>
Baxter PNW.
Compr. Supramol. Chem.
1996,
9:
165
<A NAME="RS04002ST-30">30</A>
Schubert US.
Eschbaumer C.
Heller M.
Org.
Lett.
2000,
3373