 
         
         
         Zusammenfassung
         
         Aus der physikalische Natur des Laserlichtes ergeben sich Anwendungen des Lasers in
            der Hals-Nasen-Ohrenheilkunde, die über das „Laserskalpell” weit hinaus gehen. In
            der folgenden Arbeit wird der Laser als ein optisches Messinstrument vorgestellt,
            welches aus der modernen Mittel- und Innenohrforschung nicht mehr wegzudenken ist.
            Durch seine kontaktfreie Funktionsweise ist er wie kein anderes Messmittel geeignet,
            die nur wenige Nanometer kleinen Schwingungsamplituden des Mittelohres und der Cochlea
            aufzunehmen. In dieser Übersichtsarbeit werden häufig eingesetzte Lasermesstechniken
            zusammengestellt, wie sie in den letzten Jahren in der Ohrforschung verwendet wurden.
            Für das Mittel- und Innenohr können detaillierte Anwendungen und neue experimentelle
            Ergebnisse der Laserinterferometrie genannt werden. Am Beispiel des Mittelohres wird
            gezeigt, wie aus Lasermessungen die Schwingform des gesunden Trommelfell-Gehörknöchelchenkomplexes
            in verschiedenen Frequenzbereichen bildlich dargestellt werden kann. Versuche am Felsenbeinpräparat
            demonstrieren die Laseranwendung bei der Mittelohrimplantatentwicklung. Erste klinische
            Untersuchungen beschreiben den Einsatz der Laserinterferometrie zur Messung der Ossikelkettenschwingungsfähigkeit
            am Patienten. Damit kann die Methode zukünftig als Ergänzung zur bestehenden Hördiagnostik
            eingesetzt werden und zusätzliche Informationen über die Funktion des Mittelohres
            hinter intaktem Trommelfell liefern. In der Innenohrforschung dient die Laserinterferometrie
            der Untersuchung der Basilarmembranschwingung und der Mikromechanik des Cortischen
            Organs. Beispielhaft wird gezeigt, wie sich mit dieser Methode Schwingungen der Basilarmembran
            bis in den Zellbereich messen lassen. Die Ergebnisse dienen der Weiterentwicklung
            bestehender Cochleamodelle und dem besseren Verständnis des cochleären Verstärkers.
         
         
         
            
Schlüsselwörter
         
         
            Laser - Interferometrie - Mittelohrmechanik - Cochleamechanik - Mittelohrimplantat
          
      
    
   
      
         Literatur
         
         
            - 1 Westphal W H. Physik. Berlin, Heidelberg; Springer-Verlag 1947 Bd. 12. 
- 2 Spengler B. Grundlagen der Lasertechnik. www.uni-duesseldorf.de/www/MedFak/LaserMedizin/Laserkurs_skript/Laserkurs_Skript.PDF
               2002 
- 3 Vogel U, Zahnert T, Hofmann G, Offergeld C, Hüttenbrink K-B. 
               Laser vibrometry of the middle ear: opportunities and limitations. In: Hüttenbrink KB (ed) Middle Ear Mechanics in Research and Otosurgery. Dresden;
               Dept. of Oto-Rhino-Laryngology, Univ. Hospital, Univ. of Technology 1997: 128-133
               
- 4 
               Tonndorf J, Khanna S M. 
               Submicroscopic displacement amplitudes of the tympanic membrane (cat) measured by
               a laser interferometer. 
               J Acoust Soc Amer. 
               1968; 
               44 
               1546-1554 
               
- 5 
               Dragsten P R, Webb W W, Paton J A, Cabranica R R. 
               Light scattering heterodyne interferometer for vibration measurements in auditory
               organs. 
               J Acoust Soc Am. 
               1976; 
               60 
               665-671 
               
- 6 
               Eberhadt F J, Anrews F A. 
               Laser heterodyne system for measurement of and analysis of vibration. 
               J Acoust Soc Am. 
               1970; 
               48 
               603-609 
               
- 7 Michelsen A. 
               Laser Techniques in Studies of Hearing. In: Sattelle DB, Lee WI, Ware BR (eds) Biomedical Applications of Laser Light Scattering. Elsevier
               Biomedical Press 1982: 357-370 
- 8 Vlaming M S. Middle ear mechanics studied by laser Doppler interferometry. TU Delft/NL;
               Dissertation 1987 
- 9 
               Willemin J F, Dandliker R, Khanna S M. 
               Heterodyne interferometer for submicroscopic vibration measurements in the inner ear. 
               J Acoust Soc Am. 
               1988; 
               83 
               787-795 
               
- 10 
               Vlaming M S, Feenstra L. 
               Studies on the mechanics of the normal human middle ear. 
               Clin Otolaryngol. 
               1986; 
               11 
               353-363 
               
- 11 
               Nishihara S, Aritomo H, Goode R L. 
               Effect of changes in mass on middle ear function. 
               Otolaryngol Head Neck Surg. 
               1993; 
               109 
               899-910 
               
- 12 
               Goode R L, Killion M, Nakamura K, Nishihara S. 
               New knowledge about the function of the human middle ear: development of an improved
               analog model. 
               Am J Otol. 
               1994; 
               15 
               145-154 
               
- 13 
               Kurokawa H, Goode R L. 
               Sound pressure gain produced by the human middle ear. 
               Otolaryngol Head Neck Surg. 
               1995; 
               113 
               349-355 
               
- 14 
               Rodriguez J J, Zenner H P, Hemmert W, Burkhardt C, Gummer A W. 
               Laservibrometrie. 
               HNO. 
               1997; 
               45 
               997-1007 
               
- 15 
               Murakami S, Gyo K, Goode R L. 
               Effect of increased inner ear pressure on middle ear mechanics. 
               Otolaryngol Head Neck Surg. 
               1998; 
               118 
               703-708 
               
- 16 
               Eiber A, Freitag H-G, Burkhardt C, Hemmert W, Maassen M M, Jorge J R, Zenner H P.
               
               Dynamics of middle ear prostheses - simulations and measurements. 
               Audiol Neuro-Otol. 
               1999; 
               4 
               178-184 
               
- 17 
               Schön F, Müller J. 
               Measurement of ossicular vibrations in the middle ear. 
               Audiol Neuro-Otol. 
               1999; 
               4 
               142-149 
               
- 18 Decraemer W F, Khanna S M. 
               New insights into vibration of the middle ear. In: Rosowski JJ, Merchant SN (eds) Second International Symposium on Middle-Ear Mechanics
               in Research and Otosurgery. Boston, MA, USA, 1999. The Hague, The Netherlands; Kugler
               Publications 2000: 23-38 
- 19 
               Voss S E, Rosowski J J, Merchant S N, Peake W T. 
               Acoustic responses of the human middle ear. 
               Hearing Research. 
               2000; 
               150 
               43-69 
               
- 20 
               Stenfelt S, Hato N, Goode R L. 
               Factors contributing to bone conduction: The middle ear. 
               J Acoust Soc Am. 
               2002; 
               111 
               947-959 
               
- 21 Brünings S. Zeitmittelungsverfahren zur Schwingungsanalyse. GMA-Bericht. Verfahren
               AO 1991 
- 22 
               Powell R L, Stetson K S. 
               Interferometric vibration analysis by wavefront reconstruction. 
               J Opt Soc Amer. 
               1965; 
               55 
               1593-1598 
               
- 23 
               Michelsen A. 
               The physiology of the locust ear. 
               Zeitschr vergl Physiol. 
               1971; 
               71 
               49-128 
               
- 24 
               Khanna S M, Tonndorf J. 
               The vibration pattern of the round window in cats. 
               J Acoust Soc Am. 
               1971; 
               50 
               1475-1483 
               
- 25 
               Khanna S M, Tonndorf J. 
               Tympanic membrane vibrations in cats studied by time-averaged holography. 
               J Acoust Soc Amer. 
               1972; 
               51 
               1904-1920 
               
- 26 
               v. Bally G. 
               Holografische Schwingungsanalyse des Trommelfelles. 
               Laryng Rhinol. 
               1978; 
               57 
               444-450 
               
- 27 
               Dancer A L, Franke A B, Smigielski P, Albe F, Fogot H. 
               Holographic interferometry applied to the investigation of tympanic-membrane displacements
               in guinea-pig ears subjected to acoustic impulses. 
               J Acoust Soc Am. 
               1975; 
               58 
               223-228 
               
- 28 
               Hogmoen K, Gundersen T. 
               Holographic investigation of stapes footplate movements. 
               Acoustica. 
               1977; 
               37 
               198-202 
               
- 29 
               Tonndorf J, Khanna S M. 
               The role of the tympanic membrane in middle ear transformation. 
               Ann Otol. 
               1970; 
               79 
               743-753 
               
- 30 
               Gundersen T, Hogmoen K. 
               Holographic vibration analysis of the ossicular chain. 
               Acta Otolaryngol. 
               1976; 
               82 
               16-25 
               
- 31 
               Höfling R. 
               Specklemesstechnik. 
               Technische Mitteilungen. 
               1992; 
               1 
               29-33 
               
- 32 Wada H, Takeuchi M, Hozawa K, Gemma T, Nara M. Vibration measurement of the tympanic
               membrane using the time-averaged speckle pattern interferometry. Abstract of the Assoc
               Res Otolaryngol 1998 27 
- 33 
               Yamaguchi M, Agawa K, Kanetake H, Koike Y, Kashima K. 
               Measurement of blood flow in human tympanic membrane with spectrophotometry and laser
               speckle flow meter. 
               Nippon Jibiinkoka Gakkai Kaiho. 
               1990; 
               93 
               1354-1362 
               
- 34 Heymann J, Lingner A. Moiréverfahren. Leipzig; VEB Fachbuchverlag 1986 Bd. 1 
- 35 
               Khanna S M, Tonndorf J. 
               Tympanic membrane shape determined by moiré topography. 
               J Acoust Soc Am. 
               1975; 
               1 
               72 
               
- 36 
               Suehiro M. 
               Effects of an increase or decrease in the middle ear pressure on tympanic membrane
               vibrations (experimental study by holographic interferometry). 
               Nippon Jibiinkoka Gakkai Kaiho. 
               1990; 
               93 
               398-406 
               
- 37 
               Decraemer W F, Dirckx J J, Funnell W R. 
               Shape and derived geometrical parameters of the adult, human tympanic membrane measured
               with a phase-shift moire interferometer. 
               Hear Res. 
               1991; 
               51 
               107-121 
               
- 38 
               Dirckx J J, Decraemer W F. 
               Area change and volume displacement of the human tympanic membrane under static pressure. 
               Hear Res. 
               1992; 
               62 
               99-104 
               
- 39 
               v. Unge M, Decraemer W F, Dirckx J J, Bagger-Sjoback D. 
               Tympanic membrane displacement patterns in experimental cholesteatoma. 
               Hear Res. 
               1999; 
               128 
               1-15 
               
- 40 
               Dirckx J J, Decraemer W F, v. Unge M, Larsson C. 
               Measurement and modeling of boundary shape and surface deformation of the Mongolian
               gerbil pars flaccida. 
               Hear Res. 
               1997; 
               111 
               153-164 
               
- 41 
               Dirckx J J, Decraemer W F. 
               Effect of middle ear components on eardrum quasi-static deformation. 
               Hear Res. 
               2001; 
               157 
               124-137 
               
- 42 
               Funnell W R, Decraemer W F. 
               On the incorporation of moire shape measurements in finite-element models of the cat
               eardrum. 
               J Acoust Soc Am. 
               1996; 
               100 
               925-932 
               
- 43 
               Riva C, Ross B, Benedek G B. 
               Laser Doppler measurements of blood flow in capillary tubes and retinal arteries. 
               Invest Ophthalmol. 
               1972; 
               11 
               936-944 
               
- 44 
               Nilsson G E, Tenland T, Oberg P A. 
               Evaluation of a laser Doppler flowmeter for measurement of tissue blood flow. 
               IEEE Trans Biomed Eng. 
               1980; 
               27 
               597-604 
               
- 45 
               Miller J M, Marks N J, Goodwin P C. 
               Laser Doppler measurements of cochlear blood flow. 
               Hear Res. 
               1983; 
               11 
               385-394 
               
- 46 
               Miller J M, Goodwin P C, Marks N J. 
               Inner ear blood flow measured with a laser Doppler system. 
               Arch Otolaryngol. 
               1984; 
               110 
               305-308 
               
- 47 
               Wright J W, Dengerink H A, Miller J M, Goodwin P C. 
               Potential role of angiotensin 2 in noise-induced increases in inner ear blood flow. 
               Hear Res. 
               1985; 
               17 
               41-46 
               
- 48 
               Hultcrantz E, Angelborg C, Beausang-Linder M. 
               Noise and cochlear blood flow. 
               Arch Otol Rhinol Laryngol. 
               1979; 
               224 
               103-106 
               
- 49 
               Laurikainen E, Kanninen P, Aho H, Saukko P. 
               The anatomy of the human promotory for laser Doppler flowmetrie. 
               Eur Arch Otolaryngol. 
               1997; 
               254 
               264-268 
               
- 50 
               Miller J M, Bredberg G, Grénman R, Suonpää J, Lindström B, Didier A. 
               Measurement of human blood flow. 
               Ann Otol Rhinol Laryngol. 
               1991; 
               100 
               44-53 
               
- 51 
               Scheibe F, Haupt H, Berndt H, Magnus S, Waymar P. 
               Laser light transmission and laser Doppler blood flow measurements on the human, rat
               and guinea pig cochlea. 
               Eur Arch Otolaryngol. 
               1990; 
               247 
               20-23 
               
- 52 
               Nakashima T, Suzuki T, Morisaki H, Yanagita N. 
               Measurement of cochlear blood flow in sudden deafness. 
               Laryngoscope. 
               1992; 
               102 
               1308-1310 
               
- 53 
               Haapaniemi J, Schrey A, Laurikainen E. 
               The effect of promotorial bone on laser light transmission in measuring capillary
               blood flow in vivo. 
               Eur Arch Otolaryngol. 
               2001; 
               258 
               209-212 
               
- 54 
               Selmani Z, Pyykkö I, Ishizaki H, Martilla T I. 
               Cochlear blood flow measurement in patients with Meniere's disease and other inner
               ear disorders. 
               Acta Otolaryngol. 
               2001; 
               545 
               10-13 
               
- 55 
               Huber A, Schwab C, Linder T, Stoeckli S, Ferrazzini M, Dillier N, Fisch U. 
               Evaluation of eardrum laser Doppler interferometry as a diagnostic tool. 
               Laryngoscope. 
               2001; 
               111 
               501-507 
               
- 56 
               Konradsson K, Ivarsson A, Bank G. 
               Computerized laser Doppler interferometric scanning of the vibrating tympanic membrane. 
               Scand Audiol. 
               1987; 
               16 
               159-166 
               
- 57 Huber A, Ball G, Asai M, Goode R. 
               The vibration pattern of the tympanic membrane after placement of a total ossicular
                  replacement prosthesis (TORP). Hüttenbrink K-B (ed) Middle ear mechanics in research and otosurgery. Dresden; Dept.
               of Oto-Rhino-Laryngology, Univ. Hospital, Univ. of Technology 1997: 219-223 
- 58 
               Tonndorf J, Khanna S M. 
               Tympanic-membrane vibrations in human cadaver ears studied by time-averaged holography. 
               J Acoust Soc Amer. 
               1972; 
               52 
               1221-1233 
               
- 59 
               Helms J. 
               Experimentelle und klinische Untersuchungen zur Funktion des normalen, erkrankten
               und operierten Trommelfells. 
               Acta Otolaryngol. 
               1977; 
               350 
               1-59 
               
- 60 
               Lokberg O J, Hogmoen K, Gundersen T. 
               Vibration measurement of the human tympanic membrane - in vivo. 
               Acta Otolaryngol. 
               1980; 
               89 
               37-42 
               
- 61 
               Guinan J J, Peake W T. 
               Middle-ear characteristics of anaesthetized cats. 
               J Acoust Soc Am. 
               1967; 
               41 
               1237-1261 
               
- 62 
               Cancura W, Stark H. 
               Über die Schwingungsform des Steigbügels in Abhängigkeit von der Lautstärke. Experimentelle
               Untersuchungen am menschlichen Schläfenbeinpräparat. Arch. 
               Oto-Rhino-Laryng. 
               1977; 
               215 
               121-128 
               
- 63 
               Heiland K E, Goode R L, Asai M, Huber A M. 
               A human temporal bone study of stapes footplate movement. 
               Am J Otol. 
               1999; 
               20 
               81-86 
               
- 64 
               Huber A, Linder T, Ferrazzini M, Schmid S, Dillier N, Stoeckli S, Fisch U. 
               Intraoperative assessment of stapes movement. 
               Ann Otol Rhinol Laryngol. 
               2001; 
               110 
               31-35 
               
- 65 Decraemer W F, Khanna S M, Funnell W R. Measurement and modelling of three-dimensional
               vibration of the stapes in cat. In: Wada H, Takasaka T, Ikeda K, Ohyama K, Koike T
               (eds) Recent developments in auditory mechanics. Sendai; World Scientific 1999: 36-44
               
- 66 
               Dahmann D. 
               Zur Physiologie des Hörens; experimentelle Untersuchungen über die Mechanik der Gehörknöchelchenkette
               sowie über deren Verhalten auf Ton und Luftdruck. 
               Z f Hals-Nasen-Ohrenheilk. 
               1930; 
               27 
               329-368, 462 - 488 
               
- 67 
               Barany E. 
               A contribution to the physiology of bone conduction. 
               Acta Otol Laryngol. 
               1938; 
               26 
               
               
- 68 
               Helmholtz H. 
               Die Mechanik der Gehörknöchelchen und des Trommelfells. 
               Pflügers Archiv Ges Physiol. 
               1868; 
               1 
               1-60 
               
- 69 v. Bekesy G. Experiments in hearing (Reprint). Huntington/NY; Robert E. Krieger
               Publ. Comp. 1960/1980 
- 70 Wever E G, Lawrence M. Physiological Acoustics. Princeton; Princeton University
               Press 1954 
- 71 
               Gyo K, Aritomo H, Goode R L. 
               Measurement of the ossicular vibration ratio in human temporal bones by use of a video
               measuring system. 
               Acta Otolaryngol Stockh. 
               1987; 
               103 
               87-95 
               
- 72 Decraemer W F, Khanna S M. 
               Vibrations on the malleus measured through the ear canal. In: Hüttenbrink K-B (ed) Middle Ear Mechanics in Research and Otosurgery. Dresden;
               Dept. of Oto-Rhino-Laryngology: Univ. Hospital, Univ. of Technology 1997: 32-39 
- 73 
               Ball G R, Huber A, Goode R L. 
               Scanning laser Doppler vibrometry of the middle ear ossicles. 
               Ear Nose Throat J. 
               1997; 
               76 
               213-222 
               
- 74 Huber A. et al .
               Analysis of ossicular vibration in three dimensions. In: Hüttenbrink K-B (ed) Middle ear mechanics in research and otosurgery. Dresden;
               Dept. of Oto-Rhino-Laryngology: Univ. Hospital, Univ. of Technology 1997: 82-87 
- 75 
               Elpern B S, Greisen O, Andersen H C. 
               Experimental studies on sound transmission in the human ear. VI: Clinical and experimental
               observations on non-otosclerotic ossicle fixation. 
               Acta Otolaryngol. 
               1965; 
               60 
               223-230 
               
- 76 
               Hudde H, Engel A. 
               Measuring and modeling basic properties of the human middle ear and ear canal. Part
               III: Eardrum impedances, transfer functions and model calculations. 
               Acustica & acta acustica. 
               1998; 
               84 
               1091-1109 
               
- 77 
               Maassen M M, Zenner H P. 
               Tympanoplasty typ 2 with ionomeric cement and titanium-gold-angle prostheses. 
               Amer J Otol. 
               1998; 
               19 
               693-699 
               
- 78 
               Hüttenbrink K B. 
               Die Mechanik und Funktion des Mittelohres: Teil 1: Die Ossikelkette und die Mittelohrmuskeln. 
               Laryngo-Rhino-Otol. 
               1992; 
               71 
               545-551 
               
- 79 
               Fletcher J L, Riopelle A J. 
               Protectice effect of the acoustic reflex for impulsive noises. 
               J Acoust Soc Am. 
               1960; 
               32 
               401-404 
               
- 80 Dallos P. The Auditory Periphery. Biophysics and Physiology. New York, London;
               Academic Press Inc. 1973 
- 81 
               Elbrond O, Elpern B S. 
               Reconstruction of ossicular chain in incus defects. 
               Arch Otolaryngol. 
               1965; 
               82 
               603-608 
               
- 82 
               Elbrond O, Elpern B S. 
               Reconstruction of the ossicular chain. 
               Arch Otolaryngol. 
               1966; 
               84 
               490-494 
               
- 83 
               Elbrond O, Elpern B S. 
               Rekonstruktion der Gehörknöchelchenkette. Experimentelle Untersuchungen. 
               Mschr Ohrenheilkunde. 
               1968; 
               102 
               102-105 
               
- 84 
               Cottle R D, Tonndorf J. 
               Mechanical aspects of stapedial substitution. An experimental study. 
               Arch Otolaryngol. 
               1966; 
               83 
               547-553 
               
- 85 Kreutzer U A. Experimentelle Untersuchungen über die Mechanik der Gehörknöchelchenkette
               nach Tympanoplastik unter Berücksichtigung der Stapesfußplatte. Tübingen; Inaug. Diss.
               1978 
- 86 
               Hüttenbrink K B, Hudde H. 
               Untersuchungen zur Schalleitung durch das rekonstruierte Mittelohr mit einem Hydrophon;
               erste Ergebnisse. 
               HNO. 
               1994; 
               42 
               49-57 
               
- 87 
               Rosowski J J, Merchant S N. 
               Mechanical and acoustic analysis of middle ear reconstruction. 
               Am J Otol. 
               1995; 
               16 
               486-497 
               
- 88 
               Williams K R, Blayney A W, Lesser T HJ. 
               A 3-D finite element analysis of the natural frequencies of vibration of a stapes
               prosthesis replacement reconstruction of the middle ear. 
               Clin Otolaryngol. 
               1995; 
               20 
               36-44 
               
- 89 Hüttenbrink K-B. 
               Mechanical aspects of middle ear reconstruction. In: Hüttenbrink K-B (ed). Middle Ear Mechanics in Research and Otosurgery. Dresden;
               Dept. of Oto-Rhino-Laryngology: Univ. Hospital, Univ. of Technology 1997: 165-169
               
- 90 Zahnert T, Schmidt R, Hüttenbrink K-B, Hardtke H-J. 
               FE-Simulation of vibrations of the Dresden middle ear prosthesis. Hüttenbrink K-B (ed) Middle Ear Mechanics in Research and Otosurgery. Dresden; Dept.
               of Oto-Rhino-Laryngology: Univ. Hospital, Univ. of Technology 1997: 200-206 
- 91 
               Asai M, Heiland K E, Huber A M, Goode R L. 
               Evaluation of a cement incus replacement prosthesis in a temporal bone model. 
               Acta Otolaryngol. 
               1999; 
               119 
               573-576 
               
- 92 
               Asai M, Huber A, Goode R L. 
               Analysis of the best site on the stapes footplate for ossicular chain reconstruction. 
               Acta Otolaryngol. 
               1999; 
               119 
               356-361 
               
- 93 
               Feenstra L, Vlaming M S. 
               Laser interferometry with human temporal bones. 
               Adv Oto-Rhino-Laryng. 
               1987; 
               37 
               36-38 
               
- 94 
               Nishihara S, Goode R. 
               Experimental study of the acoustic properties of incus replacement prostheses in a
               human temporal bone model. 
               Am J Otol. 
               1994; 
               15 
               485-494 
               
- 95 
               Gan R Z, Wood M W, Dyer R K, Dormer K J. 
               Mass loading on the ossicles and middle ear function. 
               Ann Otol Rhinol Laryngol. 
               2001; 
               110 
               478-485 
               
- 96 
               Meister H, Walger M, Mickenhagen A, Stennert E. 
               Messung der Schwingungseigenschaften von Mittelohrimplantaten mit einem mechanischen
               Mittelohrmodell. 
               HNO. 
               1998; 
               46 
               241-245 
               
- 97 
               Tange R A, Bruijn A JG, Grolman W. 
               Experience with a new pure gold piston in stapedotomy for cases of otosclerosis. 
               Auris Nasus Larynx. 
               1998; 
               25 
               249-253 
               
- 98 
               Gjuric M, Schagerl S. 
               Gold prostheses for ossiculoplasty. 
               Am J Otol. 
               1998; 
               19 
               273-276 
               
- 99 
               Stupp G H, Dalchow C, Grün D, Stupp H F, Wustrow J. 
               Titan-Prothesen im Mittelohr. 3-Jahres-Erfahrungsbericht. 
               Laryngo-Rhino-Otol. 
               1999; 
               78 
               299-303 
               
- 100 
               Fisch U. 
               Total reconstruction of the ossicular chain. 
               Otolaryngol Clin N Amer. 
               1994; 
               27 
               785-797 
               
- 101 Dyer, Jr R K, Dormer K J, Pineda M, Conley K, Saunders J, Dennis M. 
               The hearing laser vibrometer. Initial clinical results. In: Rosowski JJ, Merchant SN (eds) Second International Symposium on Middle-Ear Mechanics
               in Research and Otosurgery. Boston, MA, USA. The Hague, The Netherlands; Kugler Publications
               2000: 383-397 
- 102 
               Goode R L, Ball G, Nishihara S. 
               Measurement of umbo vibration in human subjects - method and possible clinical applications. 
               Am J Otol. 
               1993; 
               14 
               247-251 
               
- 103 
               Goode R L, Ball G, Nishihara S, Nakamura K. 
               Laser Doppler Vibrometer (LDV) - A new clinical tool for the otologist. 
               Amer J Otol. 
               1996; 
               17 
               813-822 
               
- 104 Merchant S N, Whittemore K R, Poon B, Lee C-Y, Rosowski J J. 
               Clinical measurements of tympanic membrane velocity using laser Doppler vibrometry.
                  Preliminary results, methodological issues and potential applications. In: Rosowski JJ, Merchant SN (eds) Second International Symposium on Middle-Ear Mechanics
               in Research and Otosurgery. Boston, MA, USA. The Hague, The Netherlands; Kugler Publications
               2000: 367-381 
- 105 
               Stasche N, Foth H-J, Hörmann K, Baker A, Huthoff C. 
               Middle ear transmission disorders - tympanic membrane vibration analysis by laser-Doppler-vibrometry. 
               Acta Otolaryngol (Stockh). 
               1994; 
               114 
               59-63 
               
- 106 
               Goode R L. 
               Middle Ear Function, Biologic Variation, and Otosurgical Alchemy. Can we turn tin
               ears into gold? . 
               Arch Otolaryngol. 
               1986; 
               112 
               923-924 
               
- 107 
               Ulfendahl M. 
               Mechanical response of the mammalian cochlea. 
               Progress Neurobiol. 
               1997; 
               53 
               331-380 
               
- 108 
               Ruggero M A, Rich N C. 
               Application of a commercially-manufactured Doppler-shift laser velocimeter to the
               measurement of basilar-membrane vibration. 
               Hear Res. 
               1991; 
               51 
               215-230 
               
- 109 
               Lynch T J, Nedzelnitsky V, Peake W T. 
               Input impedance of the cochlea in cat. 
               J Acoust Soc Am. 
               1982; 
               72 
               108-131 
               
- 110 
               Khanna S M, Figueroa L Y. 
               Need for noninvasive technique to measure cochlear responses. 
               Acta Otolaryngol (Stockh). 
               1989; 
               467 
               19-26 
               
- 111 
               Hemmert W, Zenner H P, Gummer A W. 
               Three-dimensional motion of the organ of Corti. 
               Biophys J. 
               2000; 
               78 
               2285-2297 
               
- 112 
               Robles L, Rugerro M A. 
               Mechanics of Mammalian Cochlea. 
               Physiological Reviews. 
               2001; 
               81 
               1305-1351 
               
- 113 Khanna S M, Koester C J, Willemin J F, Dändliker R, Rosskothen H. A noninvasive
               optical system for the study of the function of inner ear in living animals. Selected
               papers on coherence domain methods in biomedical optics. SPIE 2732.Tuchin V 1996:
               64-81 
- 114 
               Khanna S M, Leonard D G. 
               Basilar membrane tuning in the cat cochlea. 
               Science. 
               1982; 
               215 
               305-306 
               
- 115 
               Nuttall A L, Dolan D F, Avinash G. 
               Laser Doppler velocimetry of basilar membrane vibration. 
               Hear Res. 
               1991; 
               51 
               203-213 
               
- 116 
               Cooper N P, Rhode W S. 
               Basilar membrane mechanics in the hook region of the cat and guinea-pig cochleae:
               Sharp tuning and nonlinearity in the absence of baseline position shifts. 
               Hear Res. 
               1992; 
               63 
               163-190 
               
- 117 
               Rugerro M A, Robles L, Rich N C. 
               Basilar membrane mechanics at the base of the chinchilla cochlea. 2. Response to low-frequency
               tones and relationship to microphonics and spike initiation in the 8. nerve. 
               J Acoust Soc Am. 
               1986; 
               80 
               1375-1383 
               
- 118 Xue S, Mountain D C, Hubbard A E. 
               Direct measurement of electrically-evoked basilar membrane motion. In: Duifhuis H, Horst JW, van Dijk P, van Netten SM (ed) Biophysics of hair cell
               sensory system. Singapore; World Scientific Publishing Co. 1993: 361-369 
- 119 
               ITER .
               Cellular vibration and motility in the organ of corti. Acta Otol Laryngol. 
               (Stockh). 
               1989; 
               467 
               1-279 
               
- 120 
               Khanna S M, Hao L F. 
               Nonlinearity in the apical turn of living guinea pig cochlea. 
               Hear Res. 
               1999; 
               153 
               89-104 
               
- 121 
               Gummer A W, Hemmert W, Zenner H P. 
               Resonant tectorial membrane motion in the inner ear: Its crucial role in frequency
               tuning. Proc. 
               Natl Acad Sci USA. 
               1996; 
               93 
               8727-8732 
               
- 122 
               Rhode W S. 
               Observations of the vibration of the basilar membrane in squirrel monkeys using the
               Mössbauer technique. 
               J Acoust Soc Am. 
               1971; 
               49 
               1218-1231 
               
- 123 
               Rhode W S. 
               Some observations on cochlear mechanics. 
               J Acoust Soc Am. 
               1978; 
               67 
               158-176 
               
- 124 
               Sellick P M, Patuzzi R, Johnstone B M. 
               Comparison between the tuning properties of inner hair cells and basilar membrane
               motion. 
               Hear Res. 
               1983; 
               10 
               93-100 
               
- 125 
               Janssen T. 
               Schwellennahe und überschwellige Schallverarbeitung des Innenohres, Teil 1: Physiologie
               und Pathophysiologie. 
               Z Audiol. 
               2000; 
               39 
               100-117 
               
- 126 
               Cooper N P. 
               An improved heterodyne laser interferometer for use in studies of cochlear mechanics. 
               J Neurosci Meth. 
               1999; 
               88 
               93-102 
               
- 127 
               Nuttall A L, Ren T, de Boer E, Zheng J, Parthasarathi A, Grosh K, Guo M, Dolan D.
               
               In vivo micromechanical measurements of the organ of Corti in the basal cochlear turn. 
               Audiol Neurootol. 
               2002; 
               7 
               21-26 
               
- 128 
               O'Neill M P, Bearden A. 
               Laser-feedback measurements of turtle basilar membrane motion using direct reflection. 
               Hear Res. 
               1995; 
               84 
               125-138 
               
- 129 
               Rhode W S, Cooper N P. 
               Two-tone suppression and distortion production on the basilar membrane in the hook
               region of cat and guinea pig cochleae. 
               Hear Res. 
               1993; 
               66 
               31-45 
               
- 130 
               Cooper N P, Rhode W S. 
               Nonlinear mechanics at the apex of the guinea-pig cochlea. 
               Hear Res. 
               1995; 
               82 
               225-243 
               
- 131 
               Ulfendahl M, Khanna S M, Fridberger A, Flock A, Flock B, Jager W. 
               Mechanical response characteristics of the hearing organ in the low- frequency regions
               of the cochlea. 
               J Neurophysiol. 
               1996; 
               76 
               3850-3862 
               
- 132 
               Zinn C, Maier H, Zenner H P, Gummer A W. 
               Evidence for active, nonlinear, negative feedback in the vibration response of the
               apical region of the in-vivo guinea-pig cochlea. 
               Hear Res. 
               2000; 
               142 
               159-183 
               
- 133 Zenner H P. Hören: Physiologie, Biochemie, Zell- und Neurobiologie. Stuttgart,
               New York; Thieme 1994 
- 134 
               Khanna S M, Willemin J F, Ulfendahl M. 
               Measurement of optical reflectivity in cells of the inner ear. 
               Acta Otolaryngol Suppl. 
               1989; 
               467 
               69-75 
               
- 135 
               Koester C J, Khanna S M, Rosskohten H D, Takaberry R B. 
               Incident light optional sectioning microscope for visualisation of cellular structures
               in the inner ear. 
               Acta Otolaryngol Suppl. 
               1989; 
               476 
               27-33 
               
- 136 Gummer A W, Hemmert W, Morioka I, Reis P, Reuter G, Zenner H P. 
               Cellular motility measured in guinea-pig cochlea. In: Duifhuis H, Horst JW, van Dijk P, van Netten SM (ed) Biophysics of Hair Cell
               Sensory Systems. Singapore; World Scientific Publishing Co. 1993: 229-239 
- 137 
               Khanna S M, Ulfendahl M, Steele C R. 
               Vibration of reflective beads on the basilar membrane. 
               Hear Res. 
               1998; 
               116 
               71-85 
               
- 138 
               Rhode W S. 
               Cochlear mechanics, A Rev. 
               Physiol. 
               1984; 
               46 
               231-246 
               
- 139 
               Rugerro M A. 
               Responses to sound of the basilar membrane of the mammalian cochlea. 
               Curr Opin Neurobiol. 
               1992; 
               2 
               449-456 
               
- 140 
               Barrett M D, Peterson E H, Grant J W. 
               Extrinsic Fabry-Perot Interferometer for measuring the stiffness of ciliary bundles
               on hair cells. 
               IEEE Trans Biomed Eng. 
               1999; 
               46 
               331-339 
               
- 141 
               Li Z, Anvari B, Takashima M, Brecht P, Torres J H, Brownell W E. 
               Membrane tether formation from outer hair cells with optical tweezers. 
               Biophys J. 
               2002; 
               82 
               1386-1395 
               
- 142 
               Yamada S, Wirtz D, Kuo S C. 
               Mechanics of living cells measured by laser tracking microrheology. 
               Biophys J. 
               2000; 
               78 
               1736-1747 
               
Dr. med. Thomas Zahnert
            Universitäts-HNO-Klinik Dresden
            
            Fetscherstraße 74 · 01307 Dresden · 
            
            Email: thomas.zahnert@mailbox.tu-dresden.de