Zusammenfassung
Für die gastroenterologische Onkologie werden zusätzliche Therapiestrategien benötigt,
die auf neuartigen Mechanismen basieren und keine Kreuzresistenz hinsichtlich gegenwärtiger
Standardtherapien zeigen. Einen dieser Ansätze stellt die Virotherapie dar, bei der
replikationskompetente virale Vektoren mit stark ausgeprägter onkolytischer Funktion
zum Einsatz kommen und gegenwärtig innerhalb präklinischer und klinischer Studien
evaluiert werden. Unter Einsatz der Methodik der molekularen Virologie ist eine Fortentwicklung
der momentan verfügbaren Vektorsysteme insbesondere zur Verbesserung der onkolytischen
Aktivität, der Tumorselektivität, der Durchwanderungsfähigkeit von Tumoren sowie der
Sicherheitsaspekte erforderlich.
Abstract
Gastroenterological oncology requires new strategies with new mechanisms of action
and without cross-resistance to currently available treatment regimes. Virotherapy
which is based on the employment of replication-competent viral vectors exhibiting
strong oncolytic properties is such an approach currently under preclinical/clinical
investigation. Techniques of molecular virology are required for further improvement
of current vectors, particularly with respect to oncolytic activity, tumour selectivity,
tumour spread capacity, and safety.
Schlüsselwörter
Virotherapie - Onkolyse - Tumorgentherapie - vermehrungsfähige virale Vektoren
Key words
Virotherapy - oncolysis - cancer gene therapy - replication-competent viral vectors
Literatur
- 1
Lal S, Lauer U M, Wessels J T. et al .
Suicide Genes: Past, Present, and Future Perspectives.
Immunol Today.
2000;
21
48-54
- 2
Yoon S K, Armentano D, Wands J R. et al .
Adenovirus-mediated gene transfer to orthotopic hepatocellular carcinomas in athymic
nude mice.
Cancer Gene Ther.
2001;
8
573-579
- 3
Bilbao R, Bustos M, Alzuguren P. et al .
A blood-tumor barrier limits gene transfer to experimental liver cancer: the effect
of vasoactive compounds.
Gene Ther.
2000;
7
1824-1832
- 4
Erbs P, Regulier E, Kintz J. et al .
In vivo cancer gene therapy by adenovirus-mediated transfer of a bifunctional yeast
cytosine deaminase/uracil phosphoribosyltransferase fusion gene.
Cancer Res.
2000;
60
3813-3822
- 5
van Dillin I J, Mulder N H, Vaalburg W. et al .
Influence of the bystander effect on HSV-tk/GCV gene therapy. A review.
Curr Gene Ther.
2002;
2
307-322
- 6
Elliot G, O’Hare P.
Intercellular trafficking and protein delivery by a Herpesvirus structural protein.
Cell.
1997;
88
223-233
- 7
Wybranietz W A, Groß C D, Phelan A. et al .
Enhanced suicide gene effect by adenoviral transduction of a VP22-Cytosine deaminase
(CD) fusion gene.
Gene Ther.
2001;
8
1654-1664
- 8
Oess S, Hildt E.
Identification of a novel cell permeable peptide derived from the Hepatitis B virus
surface antigen.
Gene Ther.
2000;
7
750-758
- 9
Kirn D.
Clinical research results with dl1520 (ONYX-015), a replication-selective adenovirus
for the treatment of cancer: What have we learned?.
Gene Ther.
2001;
8
89-98
- 10
Ring C JA.
Cytolytic viruses as potential anti-cancer agents.
J Gen Virol.
2002;
83
491-502
- 11
Baum C.
Replikative Viren in der Krebstherapie.
Forum DKG.
2002;
Sonderheft 1/02
58
- 12
Sinkovics J, Horvath J.
New developments in the virus therapy of cancer: a historical review.
Intervirol.
1993;
36
193-214
- 13
Southam C M.
Present status of oncolytic virus studies.
NY Acad Sci.
1960;
22
656-673
- 14
Bluming A Z, Ziegler J L.
Regressin of Burkitt's lymphoma in association with measles infection.
Lancet.
1971;
ii
105-106
- 15
Taqi A M, Abdurrahman M B, Yakubu A M. et al .
Regression of Hodgkin's disease after measles.
Lancet.
1981;
i
1112
- 16
Kirn D H.
Replicating oncolytic viruses: an overview.
Expert Opin Investig Drugs.
1996;
5
753-762
- 17
Tollefson A, Scaria A, Hermiston T W. et al .
The adenovirus death protein (E3 - 11.6K) is required at late stages of infection
for efficient lysis and release of adenovirus from infected cells.
J Virol.
1996;
70
2296-2306
- 18
Everett H, McFadden G.
Apoptosis: an innate immune response to virus infection.
Trends in Microbiol.
1999;
7
160-165
- 19
Basu S, Binder R J, Suto R. et al .
Necrotic but not apoptotic cell death releases heat shock proteins, which deliver
a partial maturation signal to dendritic cells and activate the NF-kappa B pathway.
Int Immunol.
2000;
12
1539-1546
- 20
Berwin B, Reed R C, Nicchitta C V.
Virally induced lytic cell death elicits the release of immunogenic grp94/gp96.
J Biol Chem.
2001;
276
21083-21088
- 21
Lorence R M, Rood P A, Kelley K W.
Newcastle disease virus as an antineoplastic agent: induction of tumor necrosis factor-α
and augmentation of its cytotoxicity.
J Natl Cancer Institute.
1988;
80
1305-1312
- 22
Stojdl D F, Lichty B, Knowles S. et al .
Exploiting tumor-specific defects in the interferon pathway with a previously unknown
oncolytic virus.
Nature Medicine.
2000;
6
821-825
- 23
Coffey M, Strong J, Forsyth P. et al .
Reovirus therapy of tumors with activated ras pathway.
Science.
1998;
282
1332-1334
- 24
Rommelaere J, Cornelis J J.
Antineoplastic activity of parvoviruses.
J Virol Methods.
1991;
33
233-251
- 25
Strong J E, Coffey M C, Tang D. et al .
The molecular basis of viral oncolysis: usurpation of the Ras signaling pathway by
reovirus.
EMBO J.
1998;
12
3351-3362
- 26
Pecora A L, Rizvi N R, Cohen G I. et al .
Phase I trial of intravenous administration of PV701, an oncolytic virus, in patients
with advanced solid cancers.
J Clin Oncology.
2002;
20
2251-2266
- 27
Hallenbeck P L, Chang Y N, Hay C. et al .
A novel tumor-specific replication-restricted adenoviral vector for gene therapy of
hepatocellular carcinoma.
Human Gene Ther.
1999;
10
1721-1733
- 28
Yamada Y, Takahashi M, Sato Y. et al .
Augmented apoptosis-inducing gene therapy for HCC by p53 under control of AFP promoter
in combination with a selectively replication-competent oncolytic adenovirus and chemotherapeutic
agent.
Mol Ther.
2002;
5
S268
- 29
Ohguchi S, Nakatsukasa H, Higashi T. et al .
Expression of alpha-fetoprotein and albumin genes in human hepatocellular carcinomas:
limitations in the application of the genes for targeting human hepatocellular carcinoma
in gene therapy.
Hepatology.
1998;
27
599-607
- 30
Brunori M, Malerba M, Kashiwazaki H. et al .
Replicating adenoviruses that target tumors with constitutive activation of the wnt
signaling pathway.
J Virology.
2001;
75
2857-2865
- 31
Powell S, Wang Z, Lemos B. et al .
A conditionally replicative adenovirus driven by the human telomerase promoter provides
broad-spectrum anti-tumor activity.
Mol Ther.
2002;
5
S19
- 32
Bischoff J R, Kirn D H, Williams A. et al .
An adenovirus mutant that replicates selectively in p53-deficient human tumor cells.
Science.
1996;
274
373-376
- 33
Biederer C, Ries S, Brandts C H. et al .
Replication-selective viruses for cancer therapy.
J Mol Med.
2002;
80
163-175
- 34
Ganly I, Kirn D, Eckhardt S.
A phase I study of ONYX-015, an E1B attenuated adenovirus, administered intratumorally
to patients with recurrent head and neck cancer.
Clin Cancer Res.
2000;
6
798-806
- 35
Vasey P, Shukman L, Gore M. et al .
Phase I trial of intraperitoneal ONYX-015 adenovirus in patients with recurrent ovarian
carcinoma.
Proceedings American Society of Clinical Oncology.
2000;
19
1512
- 36
Reid T. et al .
Hepatric artery infusion of ONYX-015, a replication-selective adenovirus, in combination
with 5-FU/leucovorin for gastrointestoinal carcinoma metastatic to the liver: A Phase
I/II clinical trial.
Proceedings American Society of Clinical Oncology.
2000;
19
953
- 37
Nemunaitis J, Ganly I, Khuri F. et al .
Selective replication and oncolysis in p53 mutant tumors with ONYX-015, an E1B-55kD
gene-deleted adenovirus, in patients with advanced head and neck cancer: a phase II
trial.
Cancer Res.
2000;
60
6359-6366
- 38
Khuri F, Nemunaitis J, Ganly I. et al .
A controlled trial of intratumoral ONYX-015, a selectively replicating adenovirus,
in combination with cisplatin and 5-fluorouracil in patients with recurrent head and
neck cancer.
Nature Medicine.
2000;
6
879-885
- 39
Nemunaitis J, Cunningham C, Buchanan A. et al .
Intravenous infusion of a replication-selective adenovirus (ONYX-015) in cancer patients:
safety, feasibility and biological activity.
Gene Ther.
2001;
8
746-759
- 40
Hecht R. et al .
A phase I/II trial of intratumoral endoscopic injection of ONYX-015 with intravenous
gemcitabine in unresectable pancreatic carcinoma.
Proceedings American Society of Clinical Oncology.
2000;
19
1039
- 41
Mulvihill S, Warren R, Venook A. et al .
Safety and feasibility of injection with an E1B-55 kD gene-deleted, replication-selective
adenovirus (ONYX-015) into primary carcinomas of the pancreas: a phase I trial.
Gene Ther.
2001;
8
308-315
- 42
Yoon S S, Nakamura H, Coroll N M. et al .
An oncolytic herpes simplex virus type I selectivley destroys diffuse liver metastases
from colon carcinoma.
FASEB J.
2000;
14
301-311
- 43
Pawlik T M, Nakamura H, Yoon S S. et al .
Oncolysis of diffuse hepatocellular carcinoma by intravascular administration of a
replication-competent, genetically engineered herpesvirus.
Cancer Res.
2000;
60
2790-2795
- 44
DeRubertis B G, Stiles B M, Bhargava A. et al .
Cytokine secreting oncolytic Herpes Virus effectively treats micrometastatic liver
disease in a murine model.
Mol Ther.
2002;
5
S101-S102
- 45
Horsburgh B C, Fong Y, Malhotra S. et al .
Multiple administration of NV1020, an oncolytic HSV-1, results in increased anti-tumor
efficacy in rodents with colorectal metastases to liver.
Mol Ther.
2002;
5
S148
- 46
Markert J. et al .
Conditionally replicating herpes simplex virus mutant, G207 for the treatment of malingnant
glioma. Results of a phase I trial.
Gene Ther.
2000;
7
867-874
- 47
Mastrangelo M, Eisenlohr L, Gomella L. et al .
Poxvirus vevtors: Orphaned and underaprreciated.
J Clin Invest.
2000;
105
1031-1034
- 48
Conry R M. et al .
Phase I trial of a recombinant vaccinia virus encoding carcinoembryonic antigen in
metastatic: Comparison of intradermal versus subcutaneous administration.
Clin Cancer Res.
1999;
5
2330-2337
- 49
Hirasawa K, Yoon C, Nishikawa S G. et al .
Reovirus therapy of metastatic cancer models in immune-competent mice.
Proc. Am Assoc Cancer Res.
2001;
42
2437a
- 50
Aktelle Informationen des National Cancer Institutes zu dem Klinischen Einsatz von
NDV finden sich unter folgender Homepage- Adresse: http://www.cancer.gov/cancer_information/doc.aspx?viewid
= 284ad06f-682d-43df-bccf-4943a09c1e98.
- 51
Roberts M S, Buasen P T, Incao B A. et al .
PV 701, a naturally attenuated strain of Newcastle disease virus, has a broad spectrum
of oncolytic activity against human tumor xenografts.
Proc Am Assoc Cancer Res.
2001;
42
2441a
- 52
Phuangsab A, Lorence R M, Reichard K W. et al .
Newcastle disease virus therapy of human tumor xenografts: antitumor effects of local
or systemic administration.
Cancer Letters.
2001;
172
27-36
- 53
Bateman A, Bullough F, Murphy S. et al .
Fusogenic membrane glycoproteins as a novel class of genes for local and immune-mediated
control of tumor growth.
Cancer Res.
2000;
60
1492-1497
- 54
Enders J, Peebles T.
Propagation in tissue culture of cytopathic agents from patients with measles.
Proc Soc Exp Biol Med.
1954;
86
277-286
- 55
Grote D, Russell S J, Corni T I. et al .
Live attenuated measle virus induces regression of human lymphoma xenografts in immunodeficient
mice.
Blodd.
2001;
97
3746-3754
- 56
Peng K W, Facteau S, Wegman T. et al .
Non-invasive in vivo monitoring of trackable viruses expressing soluble marker peptides.
Nature Medicine.
2002;
8
527-531
- 57
Peng K W, TenEyck C T, Galanis E. et al .
Intraperitoneal Therapy of Ovarian Cancer Using an Engineered Measles Virus.
Mol Ther.
2002;
5
S444
- 58
Balachandran S, Porosnicu M, Barber G N.
Oncolytic activity of vesicular stomatitis virus is effective against tumors exhibiting
aberrrant p53, Ras, or Myc function and involves induction of apoptosis.
J Virol.
2001;
75
3474-3479
- 59
Fernandez M, Porosnicu M, Markovic D. et al .
Genetically engineered vesicular stomatitis virus in gene therapy: application for
treatment of malignant disease.
J Virol.
2002;
76
895-904
- 60 Weiss R A. Introducing viruses and cancer. Arrand JR, Harper DR Viruses and Human
Cancer Oxford; Bios Scientific Publishers 1-15
- 61
Heise C, Williams A, Olesch J. et al .
Efficacy of a replication-competent adenovirus (ONYX-015) following intratumoral injection:
Intratumoral spread and distribution effects.
Cancer Gene Ther.
1999;
6
499-504
- 62
Douglas J, Kim M, Sumerel L. et al .
Efficient oncolysis by a replicating adenovirus in vivo is critically dependent on
tumor expression of primary Ad receptors.
Cancer Res.
2001;
61
499-504
- 63
Yu D. et al .
Antitumor synergy of CN787, a prostate cancer-specific adenovirus, and paclitaxel
and docetaxel.
Cancer Res.
2001;
61
517-525
- 64
Heise C, Lemmon M, Kirn D.
Replication-selective adenovirus plus cisplatin chemotherapy efficacy is dependent
on sequencing but independent of p53 status.
Clin Cancer Res.
2000;
6
4908-4914
- 65
Sugarbaker P H, Schellinx M E, Chang D. et al .
Peritonela carcinomatosis from adenocarcinoma of the colon.
World J Surgery.
1996;
20
585-592
- 66
Rogulski K R, Freytag S O, Zhang K. et al .
In vivo antitumor activity of ONYX-015 is influenced by p53 status and is augmented
by radiotherapy.
Cancer Res.
2000;
60
1193-1196
- 67
Barajas M, Mazzolini G, Genove G. et al .
Gene therapy of orthotopic hepatocellular carcinomas in rats using adenovirus coding
for interleukin 12.
Hepatology.
2001;
33
52-61
- 68
Habib N A, Mitry R R, Sarraf C E. et al .
Assessment of growth inhibition and morphological changes in in vitro and in vivo
hepatocellular carcinoma models post treatment with dl1520 adenovirus.
Cancer Gene Ther.
2002;
9
414-420
- 69
Habib N A, Sarraf C E, Mitry R R. et al .
E1B deleted adenovirus (dl1520) gene therapy for patients with primary and secondary
liver tumors.
Hum Gene Ther.
2001;
12
219-226
- 70
Reid T, Galanis E, Abbruzzese J. et al .
Intra-arterial administration of a replication-selective adenovirus (dl1520) in patients
with colorectal carcinoma metastatic to the liver: a phase 1 trial.
Gene Ther.
2001;
8 (21)
1618-1626
PD Dr. med. Ulrich M. Lauer
Abteilung Innere Medizin I, Medizinische Universitätsklinik, Universitätsklinikum
Tübingen
Otfried-Müller-Straße 10
72076 Tübingen
Email: ulrich.lauer@uni-tuebingen.de