Abstract
A general, novel, ligandless and efficient method was developed for the Raney Ni-Al
alloy/copper co-catalyzed formation of diaryl ethers by C-O cross-coupling reaction
from aryl iodides, bromides, and even aryl chlorides with phenols.
Key words
copper - Raney Ni-Al alloy - cross-coupling - phenols - ligandless
References
<A NAME="RU15803ST-1A">1a </A>
Mino T.
Shirae Y.
Sakamoto M.
Fujita T.
Synlett
2003,
882
<A NAME="RU15803ST-1B">1b </A>
Jonckers THM.
Maes BU.
Lemiere GLF.
Rombouts G.
Pieters L.
Haemers A.
Dommisse RA.
Synlett
2003,
615
<A NAME="RU15803ST-1C">1c </A>
Gonthier E.
Breinbauer R.
Synlett
2003,
1049
<A NAME="RU15803ST-1D">1d </A>
Iyer S.
Jayanthi A.
Synlett
2003,
1125
<A NAME="RU15803ST-1E">1e </A>
Nicolaou KC.
Christopher NCB.
J. Am. Chem. Soc.
2002,
124:
10451
<A NAME="RU15803ST-1F">1f </A>
Strurmer R.
Angew. Chem. Int. Ed.
1999,
38:
3307
<A NAME="RU15803ST-1G">1g </A>
Wolfe JP.
Wagaw S.
Marcoux JF.
Buchwald SL.
Acc. Chem. Res.
1998,
31:
805
<A NAME="RU15803ST-2A">2a </A>
Pello’n RF.
Carrasco R.
Milia’n V.
L. Synth.Commun.
1995,
25:
1077
<A NAME="RU15803ST-2B">2b </A>
Theil F.
Angew. Chem. Int. Ed.
1999,
38:
2345 ; and references cited therein
For examples of biologically important diaryl ethers, see:
<A NAME="RU15803ST-3A">3a </A>
Islas-Gonzalez G.
Bois-Choussy MZ.
J. Org. Biomol. Chem.
2003,
1:
30
<A NAME="RU15803ST-3B">3b </A>
Evans DA.
DeVries MK. In
Glycopeptide Antibiotics , Drugs and the Pharmaceutical Sciences
63:
Nagarajan R.
Marcel Decker;
New York:
1994.
p.63
<A NAME="RU15803ST-3C">3c </A>
Eicher T.
Fey S.
Puhl W.
Buchel E.
Speicher A.
Eur. J. Org. Chem.
1998,
877
<A NAME="RU15803ST-3D">3d </A> Iyoda M., Sakaitani M., Otsuka, H., Oda M.; Tetrahedron Lett .; 1985 , 26 : 4777
<A NAME="RU15803ST-3E">3e </A>
Evans DA.
Wood MR.
Trotter BW.
Richardson TI.
Barrow JC.
Katz JL.
Angew. Chem. Int. Ed.
1998,
37:
2700
<A NAME="RU15803ST-3F">3f </A>
Evans DA.
Dinsmore CJ.
Watson PS.
Wood MR.
Richardson TI.
Trotter BW.
Katz JL.
Angew. Chem. Int. Ed.
1998,
37:
2704
<A NAME="RU15803ST-3G">3g </A>
Zhang AJ.
Burgess K.
Angew. Chem. Int. Ed.
1999,
38:
634
<A NAME="RU15803ST-4A">4a </A>
Ullmann F.
Chem. Ber.
1904,
37:
853
<A NAME="RU15803ST-4B">4b </A>
Lindley J.
Tetrahedron
1984,
40:
1433
<A NAME="RU15803ST-4C">4c </A>
Chan DMT.
Winters MP.
Monacoand KL.
Wang R.
Tetrahedron Lett.
1998,
39:
2933
<A NAME="RU15803ST-5">5 </A>
Mann G.
Hartwig JF.
Tetrahedron Lett.
1997,
38:
8005
<A NAME="RU15803ST-6">6 </A>
Aranyos A.
Old DW.
Kiyomori A.
Wolfe JP.
Sadighi JP.
Buchwald SL.
J. Am. Chem. Soc.
1999,
121:
4369
<A NAME="RU15803ST-7A">7a </A>
Goodbrand HB.
Hu NX.
J. Org. Chem.
1999,
64:
670
<A NAME="RU15803ST-7B">7b </A>
Fagan PJ.
Hauptman E.
Shapiro R.
Casalnuovo A.
J. Am. Chem. Soc.
2002,
122:
5043
<A NAME="RU15803ST-8">8 </A>
Marcoux JF.
Doye S.
Buchwald SL.
J. Am. Chem. Soc.
1997,
119:
10539
<A NAME="RU15803ST-9A">9a </A>
Evans DA.
Katz JL.
West TR.
Tetrahedron Lett.
1998,
39:
2937
<A NAME="RU15803ST-9B">9b </A>
Decicco CP.
Song Y.
Evans DA.
Org. Lett.
2001,
3:
1029
<A NAME="RU15803ST-9C">9c </A>
Lam PYS.
Vincent G.
Clark C.
Deudon S.
Jadhav PK.
Tetrahedron Lett.
2001,
42:
3415
<A NAME="RU15803ST-9D">9d </A>
Lam PYS.
Vincent G.
Bonne D.
Clark CG.
Tetrahedron Lett.
2003,
44:
4927
<A NAME="RU15803ST-10A">10a </A>
Gujadhur RK.
Bates CG.
Venkataraman D.
Org. Lett.
2001,
3:
4315
<A NAME="RU15803ST-10B">10b </A>
Gujadhur R.
Venkataraman D.
Synth. Commun.
2001,
31:
1077
<A NAME="RU15803ST-10C">10c </A>
Li F.
Wang Q.
Ding Z.
Tao F.
Org. Lett.
2003,
5:
2865
<A NAME="RU15803ST-10D">10d </A>
Wipf P.
Lynch SM.
Org. Lett.
2003,
5:
1155
<A NAME="RU15803ST-10E">10e </A>
He H.
Wu YJ.
Tetrahedron Lett
2003,
44:
3445
<A NAME="RU15803ST-11A">11a </A>
Wolfe JP.
Buchwald SL.
J. Am. Chem. Soc.
1997,
119:
6054
<A NAME="RU15803ST-11B">11b </A>
Bolm C.
Hildebrand JP.
Rudolph J.
Synthesis
2000,
911
<A NAME="RU15803ST-11C">11c </A>
Lipshutz BH.
Ueda H.
Angew. Chem. Int. Ed.
2000,
39:
4492
<A NAME="RU15803ST-11D">11d </A>
Desmarets C.
Scheneider R.
Fort Y.
J. Org. Chem.
2002,
67:
3029
<A NAME="RU15803ST-11E">11e </A>
Tasler S.
Lipshutz BH.
J. Org. Chem.
2003,
68:
1190 ; and references cited therein
<A NAME="RU15803ST-12A">12a </A>
Mukumoto M.
Mashimo T.
Tsuzuki H.
Tsukinoki T.
Uezu N.
Mataka S.
Tashiro M.
Kakinami TT.
J. Chem. Res., Synop.
1995,
412
<A NAME="RU15803ST-12B">12b </A>
Liu GB.
Tsukinoki T.
Kanda T.
Mitoma Y.
Tashiro M.
Tetrahedron Lett.
1998,
39:
5991
<A NAME="RU15803ST-12C">12c </A>
Ishimoto K.
Mitoma Y.
Nagashima S.
Tashiro H.
Surya Prakash GK.
Olah GA.
Tashiro M.
Chem. Commun.
2003,
514
<A NAME="RU15803ST-13">13 </A>
Typical Experimental Procedure. An oven-dried resealable Schlenk tube was fitted with
a rubber septum and was cooled to room temperature under N2 purge. The septum was removed, and the tube was charged with CuI (10 mol%), 10-50
mg Raney Ni-Al alloy, K2 CO3 (2.0 mmol), aryl halides (1.0mmol), and phenols (1.2-1.4 mmol). The tube was capped
with the septum and purged with N2 , and then dioxane(2ml) was added through the septum. The reaction mixture was stirred
at 110 °C for 12-24 h (reaction times were not optimized). The reaction mixture was
allowed to cool to room temperature and then diluted with ether and poured into a
separating funnel. The mixture was washed with 1 M NaOH and brine, and then the organic
fraction was dried over anhydrous magnesium sulfate, filtered, and concentrated. The
crude material was purified by flash chromatography on silical gel.
<A NAME="RU15803ST-14A">14a </A>
Moroz AA.
Shvartsberg MS.
Russ. Chem. Rev.
1974,
43:
679
<A NAME="RU15803ST-14B">14b </A>
Lindley J.
Tetrahedron
1984,
40:
1433
<A NAME="RU15803ST-15">15 </A>
Lituak VV.
Shein SM.
Zh. Org. Khim.
1974,
2373
<A NAME="RU15803ST-16">16 </A>
Aaten HL.
van Koten G.
Grove DM.
Kuilman T.
Piekstra OG.
Hulshof LA.
Sheldon RA.
Tetrahedron
1989,
45:
5565
<A NAME="RU15803ST-17">17 </A>
All the products were identified by NMR and GC-MS (Agilent 6890N GC/5973N MS, HP-5MS).
Selected data for the product of entry 13: 1 H NMR (300 MHz, CDCl3 ): 7.86 (d, J = 8.7 Hz, 2 H), 7.41-6.92 (18 H), 6.81 (d, J = 8.4 Hz, 2 H); 13 C NMR (300 MHz, CDCl3 ): 157.45, 152.54, 134.19, 129.705, 129.58, 129.26, 128.01, 126.55, 125.75, 124.59,
123.19, 122.64, 119.27, 118.88.