Zusammenfassung
Ziel der Studie: Die präzise Erkennung von Kammerflimmern (KF), die richtige Einschätzung der Defibrillierbarkeit und die Anpassung des Defibrillationspulses an den transthorakalen Widerstand können Strom-assoziierte Myokardschäden von unnötigen Defibrillationen vermeiden. Die herstellerspezifischen EKG-Amplitudenschwellwerte zur Abgrenzung von Asystolie und Ergebnisse verschiedener Studien über die Verwendbarkeit von passenden Parametern und Algorithmen zur Analyse von EKG Signalen beim KF wurden evaluiert. Methodik: Eine Hersteller- und Literaturüberblicksarbeit mit folgenden Parametern wurde durchgeführt: Amplitude, Frequenz, Bispektralanalyse, Fläche des Amplitudenspektrums, nicht-lineare Dynamik, N(α)-Histogramme, sowie eine Kombination von mehreren Parametern. Ergebnisse: Die EKG-Amplitudenschwellwerte zur Abgrenzung der Asystolie von KF sind bei den handelsüblichen Defibrillatoren unterschiedlich festgelegt. Wir stellen Möglichkeiten vor, wie die EKG-Analyse der nächste Defibrillatorgeneration optimiert werden könnte. Im Rahmen der erweiterten Wiederbelebungsmaßnahmen sollte die Wahrscheinlichkeit für einen Defibrillationserfolg abgeschätzt werden können. Die optimale Form des Defibrillationspulses sollte mittels des transthorakalen Widerstandes individuell bestimmbar sein. Beim prolongierten KF mit niedriger Amplitude sollte die Defibrillation erst versucht werden, nachdem die Koronararterienperfusion durch erweiterte Maßnahmen der Reanimation verbessert wurde und die charakteristischen Parameter des Flimmersignals zugenommen haben. Die kombinierte Auswertung von Flimmeramplitude und Flimmerfrequenz kann den Defibrillationserfolg genauer vorhersagen. Unter Einbindung weiterer Parameter könnte die Bestimmung des optimalen Defibrillationszeitpunktes optimiert werden. Die Anwendbarkeit der meisten Parameter unter Prähospitalbedingungen der kardiopulmonalen Wiederbelebung (CPR) wird derzeit durch die fehlende technische Machbarkeit einer online-Auswertung begrenzt. Schlussfolgerung: Die Flimmersignalanalyse sollte sowohl eine adäquate Flimmererkennung als auch eine verlässliche Vorhersage des Defibrillationserfolges ermöglichen. Passende Schwellwerte müssen festgelegt und Störeinflüsse von Reanimationsmaßnahmen auf die Datenanalyse vermindert werden. Die Flimmersignalanalyse ist eine Voraussetzung für eine individuell optimale Effektivität der Defibrillation und kann wesentlich zur Qualitätssteigerung der CPR beitragen.
Abstract
Objective: Precise detection of ventricular fibrillation (VF), reliable prediction of defibrillation success and adjustment of the discharge waveform to the patient's transthoracic impedance may contribute to a reduction of electricity-associated myocardial injury caused by unnecessary counter shocks. Specifically, asystole thresholds distinguish between VF and asystole, and thus prevent unnecessary defibrillation attempts. We reviewed various studies and manufacturer characteristics regarding the parameters and algorithms for analyzing arrhythmia ECG signals. Methods: Asystole threshold values of several defibrillator manufacturers were collected and a literature review was performed including the following parameters: amplitude, frequency, bispectral analysis, amplitude spectrum area, wavelets, nonlinear dynamics, N(α)histograms, and combinations of various parameters. Results: The manufacturer dependent asystole thresholds vary substantially. We show ways to optimize an ECG-based analysis for the next technological generation of defibrillators. During advanced cardiac life support (ACLS) the probability of defibrillation success should be estimated. Optimal defibrillation waveform, depending on transthoracic resistance, should be individually determined. In case of prolonged VF with a low ECG amplitude defibrillation should not be attempted unless coronary perfusion has been improved by further measures of ACLS. The combined evaluation of VF amplitude and frequency is effective in predicting defibrillation success. Estimation of further parameters is potentially useful for guiding optimal timing of defibrillation. At present, the implementation of most parameters in out-of-hospital cardiopulmonary resuscitation (CPR) is limited by the lack of technical feasibility of online computing. Conclusion: Analysis of VF ECG signals should allow adequate VF detection as well as prediction of defibrillation success. Suitable asystole thresholds for analysis of ECG signals have to be determined, and the adverse effects of CPR associated artefacts on data analysis have to be reduced. Analysis of VF ECG signals is a precondition of individually optimized defibrillation and may contribute substantially to an increased quality of CPR.
Schlüsselwörter
CPR - Defibrillation - EKG - Myokardschädigung - Kammerflimmern
Key words
CPR - defibrillation - ECG - myocardial injury - ventricular fibrillation
Literatur
1
Kouwenhoven W B, Jude J R, Knickerbocker G G.
Closed-chest ardiac massage.
J Am Med Ass.
1960;
173
1064-1067
2
Zoll P M, Linenthal A J, Gibson W, Paul M H, Normal L R.
Termination of ventricular fibrillation in man by an externally applied electric shock.
New Engl J Med.
1956;
254
727-732
3
White R D.
Technologic advances and program initiatives in public access defibrillation using automated external defibrillators.
Curr Opin Crit Care.
2001;
7
(3)
145-151
4
Larsen M P, Eisenber M S, Cummins R O, Hallstrom A P.
Predicting survival from out-of-hospital cardiac arrest: a graphic model.
Ann Emerg Med.
1993;
22
1652-1658
5
Cobb L A, Fahrenbruch C E, Walsh T R. et al .
Influence of cardiopulmonary resuscitation prior to defibrillation in patients with out-of-hospital ventricular fibrillation.
J Am Med Ass.
1999;
281
1182-1188
6
Niemann J T, Cairns C B, Sharma J. et al .
Treatment of prolonged ventricular fibrillation: immediate countershock versus high-dose epinephrine and CPR preceding countershock.
Circulation.
1992;
85
281-287
7
Cruz B, Niemann J T.
Experimental studies on precordial compression or defibrillation as initial interventions for ventricular fibrillation.
Crit Care Med.
2000;
28
225-227
8
Niemann J T, Cruz B, Garner D. et al .
Immediate countershock versus cardiopulmonary resuscitation before countershock in a 5-minute swine model of ventricular fibrillation arrest.
Ann Emerg Med.
2000;
36
543-546
9
Wik L, Hansen T B, Fylling F. et al .
Delaying defibrillation to give basic cardiopulmonary resuscitation to patients with out-of-hospital ventricular fibrillation: a randomized trial.
J Am Med Ass.
2003;
289
(11)
1389-1395
10
Dahl C F, Ewy G A, Warner E D, Thomas E D.
Myocardial necrosis from direct current countershock: effect of paddle electrode size and time interval between discharges.
Circulation.
1974;
50
956-961
11
Babbs C F, Tacker W A, Van Fleet J F, Bourland J D, Geddes L A.
Therapeutic indices for transchest defibrillator shocks: effective, damaging, and lethal electrical doses.
Am Heart J.
1980;
99
734-738
12
van Fleet J F, Tacker W A, Geddes L A, Ferrous V J.
Sequential cardiac morphologic alterations induced in dogs by single transthoracic damped sinusoidal wafeform defibrillator shocks.
Am J Vet Res.
1978;
39
271-278
13
Caterine M R, Spencer K T, Pagan-Carlo L A, Smith R S, Buettner G R, Kerber R E.
Direct current shocks to the heart generate free radicals: An electron paramagnetic resonance study.
J Am Coll Cardiol.
1996;
28
(6)
1598-1609
14
Jian H, Kenknight B H, Rollins D L, Smith W M, Ideker R E.
Ventriculalr defibrillation with triphasic waveforms.
Circulation NY.
2000;
101
(11)
1324-1328
15
Niemann J T, Cairns C B.
Hyperkalemia and ionized hypocalcemia during cardiac arrest and resuscitation: Possible culprits for postcountershock arrhythmias?.
Ann Emerg Med.
1999;
34
(1)
1-7
16
Leng C T, Berger R D, Calkins H, Lardo A, Paradis N A, Halperin H R.
Electrical induction of ventricular fibrillation for resuscitation from postcountershock pulseless and asystolic cardiac arrests.
Circulation NY.
2001;
104
(6)
723-728
17
Xie J, Weil M H, Sun S. et al .
High-energy defibrillation increases the severity of postresuscitation myocardial dysfunction.
Circulation.
1997;
96
683-688
18
Strohmenger H U, Wenzel V.
Electrocardiographic prediction of cardiopulmonary resuscitation success.
Curr Opin Crit Care.
2000;
6
192-195
19
Eftestol T, Sunde K, Steen P A.
Effects of interrupting precordial compressions on the calculated probability of defibrillation success during out-of-hospital cardiac arrest.
Circulation.
2002;
105
(19)
2270-2273
20
Yu T, Weil M H, Tang W, Sun S, Klouche K, Povoas H, Bisera J.
Adverse outcomes of interrupted precordial compression during automated defibrillation.
Circulation.
2002;
106
(3)
368-372
21
Feneley M P, Maier G W, Kern K B. et al .
Influence of compression rate on initial success of resuscitation and 24 hour survival after prolonged manual cardiopulmonary resuscitation in dogs.
Circulation.
1988;
77
240-250
22
Sato Y, Weil M H, Sun Tang W. et al .
Adverse effects of interrupting precordial compression during cardiopulmonary resuscitation.
Crit Care Med.
1997;
25
733-736
23
Noc M, Weil M H, Tang W. et al .
Electrocardiographic prediction of the success of cardiac resuscitation.
Crit Care Med.
1999;
27
708-714
24
Patwardhan A, Moghe S, Wang K. et al .
Relation between ventricular fibrillation voltage and probability of defibrillation shocks: analysis using Hilbert transforms.
J Electrocardiol.
1998;
31
317-325
25
Amann A, Rheinberger K, Achleitner U, Krismer A C, Lingnau W, Lindner K H, Wenzel V.
The prediction of defibrillation outcome using a new combination of mean frequency and amplitude in porcine models of cardiac arrest.
Anesth Analg.
2002;
96
716-722
26
Achleitner U, Wenzel V, Strohmenger H U. et al .
The effects of repeated doses of vasopressin or epinephrine on ventricular fibrillationin a porcine model of prolonged cardiopulmonary resuscitation.
Anesth Analg.
2000;
90
1067-1075
27
Achleitner U, Wenzel V, Strohmenger H U, Lindner K H, Baubin M A, Krismer A C, Mayr V D, Amann A.
The beneficial effect of basic life support on ventricular fibrillation mean frequency and coronary perfusion pressure.
Resuscitation.
2001;
51
151-158
28
Patwardhan A, Moghe S, Wang K. et al .
Frequency modulation within electrocardiograms during ventricular fibrillation.
Am J Physiol Heart Circ Physiol.
2000;
279
825-835
29
Small M, Yu D, Harrison R.
Variation in the dominant period during ventricular fibrillation.
Med Biol Eng Comput.
2001;
im Druck
30
Patwardhan A, Wang K, Moghe S. et al .
Bispectral energies within electrocardiograms during ventricular fibrillation are correlated with defibrillation shock outcome.
Ann Biomed Eng.
1999;
27
171-179
31
Povoas H P, Bisera J.
Electrocardiographic waveform analysis for predicting the success of defibrillation.
Crit Care Med.
2000;
28
210-211
32
Watson J N, Addison P S, Clegg P R. et al .
A novel wavelet transform based analysis reveals hidden structure in ventricular fibrillation.
Resuscitation.
2000;
43
121-127
33
Small M, Yu D, Harrison R. et al .
Deterministic nonlinearity in ventricular fibrillation.
Chaos.
2000;
10
268-277
34
Small M, Yu D, Harrison R. et al .
Characterizing nonlinearity in ventricular fibrillation.
Comput Cardiol.
1999;
26
17-20
35
Yu D, Small M, Harrison R. et al .
Complexity measurements for analysis and diagnosis of early ventricular fibrillation.
Comput Cardiol.
1999;
26
21-24
36
Yu D, Small M, Harrison R. et al .
Measuring temporal complexity of ventricular fibrillation.
Phys Lett A.
2000;
265
668-675
37
Callaway C W, Sherman L D, Scheatzle M D. et al .
Scaling structure of electrocardiogrpahic waveform during prolonged ventricular fibrillation in swine.
Pacing Clin Electrophysiol.
2000;
23
180-191
38
Sherman L D, Callaway C W, Menegazzi J J.
Ventricular fibrillation exhibits dynamical properties and self-similarity.
Resuscitation.
2000;
47
163-173
39
Brown C G, Dzwonczyk R, Werman H A. et al .
Estimating the duration of ventricular fibrillation.
Ann Emerg Med.
1989;
18
1181-1185
40
Brown C G, Griffith R F, Van Ligten P. et al .
Median frequency: a new parameter for predicting defibrillation success rate.
Ann Emerg Med.
1991;
20
787-789
41
Dzwonczyk R, Brown C G, Werman H A.
The median frequency of the ECG during ventricular fibrillation: its use in an algorithm for estimating the duration of cardiac arrest.
IEEE Trans Biomed Eng.
1990;
37
640-646
42
Amann A, Mayr G, Strohmenger H U.
N(α)-histogram analysis of the ventricular fibrillation ECG-signal as predictor of countershock success.
Chaso, Solitions and Fractals.
2000;
11
1205-1212
43
Amann A, Achleitner U, Antretter H. et al .
Analysing ventricular fibrillation ECG-signals and predicting defibrillation success during cardiopulmonary resuscitation employing N(α) histograms.
Resuscitation.
2001;
50
77-85
44
Eftestol T, Sunde K, Ole Aase S. et al .
Predicting outcome of defibrillation by spectral characterization and nonparametric classification of ventricular fibrillation in patients with out-of-hospital cardiac arrest.
Circulation.
2000;
102
1523-1529
45
Brown C G, Dzwonczyk R.
Signal analysis of the human electrocardiogram during ventricular fibrillation: frequency and amplitude parameters as predictors of successful countershock.
Ann Emerg Med.
1996;
27
184-188
46
Monsieurs K G, De Cauwer H, Wuyts F L. et al .
A rule for early outcome classification of out-of-hospital cardiac arrest patients presenting with ventricular fibrillation.
Resuscitation.
1998;
36
37-44
47
Strohmenger H U, Lindner K H, Brown C G.
Analysis of the ventricular fibrillation ECG signal amplitude and frequency parameters as predictors of countershock success in humans.
Chest.
1997;
111
584-589
48
Aase S O, Eftestol T, Husoy J H. et al .
CPR artifact removal from human ECG using optimal multichannel filtering.
IEEE Trans Biomed Eng.
2000;
47
1440-1449
49
Callaham M, Braun O, Valentine W. et al .
Prehospital cardiac arrest treated by urban first-responders: profile of patient response and prediction of outcome by ventricular fibrillation waveform.
Ann Emerg Med.
1993;
22
1664-1677
50
Noc M, Weil M H, Gazmuri R J. et al .
Ventricular fibrillation voltage as a monitor of the effectiveness of cardiopulmonary resuscitation.
J Lab Clin Med.
1994;
124
421-426
51
Strohmenger H U, Lindner K H, Prengel A W. et al .
Effects of epinephrine and vasopressin on median fibrillation frequency and defibrillation success in a porcine model of cardiopulmonary resuscitation.
Resuscitation.
1996;
31
65-73
52
Strohmenger H U, Lindner K H, Lurie K G. et al .
Frequency of ventricular fibrillation as a predictor of defibrillation success during cardiac surgery.
Anesth Analg.
1994;
79
434-438
53
Strohmenger H U, Lindner K H, Keller A. et al .
Effects of graded doses of vasopressin on median fibrillation frequency in a porcine model of cardiopulmonary resuscitation: results of a prospective, randomized, controlled trial.
Crit Care Med.
1996;
24
1360-1365
54
Stewart A J, Allen J D, Adgey A A.
Frequency analysis of ventricular fibrillation and resuscitation success.
Q J Med.
1992;
85
761-769
55
Martin D R, Brown C G, Dzwonczyk R.
Frequency analysis of the human and swine electrocardiogram during ventricular fibrillation.
Resuscitation.
1991;
22
85-91
56
Carlisle E J, Allen J D, Kernohan W G. et al .
Fourier analysis of ventricular fibrillation of varied aetiology.
Eur Heart J.
1990;
11
173-181
57
Weaver W D, Cobb L A, Dennis D. et al .
Amplitude of ventricular fibrillation waveform and oautcome after cardiac arrest.
Ann Intern Med.
1985;
102
53-55
58
Dalzell G W, Adgey A A.
Determinants of successful transthoracic defibrillation and outcome in ventricular fibrillation.
Br Heart J.
1991;
65
311-316
59
Martin G, Cosin J, Such M. et al .
Relation between power spectrum time course during ventricular fibrillation and electromechanical dissociation: effects of coronary perfusion and nifedipine.
Eur Heart J.
1986;
7
560-569
60
Schneider T, Martens P R, Paschen H. et al .
Multicenter, randomized, controlled trial of 150-J biphasic shocks compared with 200- to 360-J monophasic shocks in the resuscitation of out-of-hospital cardiac arrest victims. Optimized Response to Cardiac Arrest (ORCA) Investigators.
Circulation.
2000;
102
1780-1787
Dr. Anton Amann
Universitätsklinik für Anästhesie und Allgemeine Intensivmedizin, Leopold-Franzens-Universität Innsbruck
Anichstraße 35
Innsbruck
Österreich
Email: anton.amann@uibk.ac.at