Aktuelle Neurologie 2004; 31(2): 60-72
DOI: 10.1055/s-2003-814848
Übersicht
© Georg Thieme Verlag Stuttgart · New York

Neuroradiologische Diagnostik in der Epileptologie

Clinical Neuroimaging in EpilepsyF.  G.  Woermann1 , C.  Brandt1 , R.  Schaumann-von-Stosch2
  • 1Epilepsiezentrum Bethel (Chefarzt: Prof. Dr. B. Pohlmann-Eden), Bielefeld
  • 2Schweizerisches Epilepsie-Zentrum (Medizinischer Direktor: Dr. G. Krämer), Zürich
Further Information

Publication History

Publication Date:
09 March 2004 (online)

Zusammenfassung

Die Magnetresonanztomographie (MRT) ist die neuroradiologische Methode der ersten Wahl bei Epilepsie. Ein MR-Untersuchungsprotokoll, das koronare, an der Hippokampuslängsachse angulierte FLAIR- und T2-Sequenzen enthält, erhöht die Chance, eine morphologische Läsion bei dieser chronischen Erkrankung zu identifizieren. Eine anfallsverursachende Läsion kann die medikamentöse Epilepsiebehandlung erschweren. Ihr Nachweis ermöglicht andererseits aber die chirurgische Behandlung. Die präoperative Abgrenzung eloquenter Kortexareale von dieser Läsion erlaubt die Abschätzung postoperativer Morbidität. Diese Übersicht befasst sich mit dem Beitrag, den verschiedene Bildgebungsmethoden zur Beantwortung dieser klinischen Fragen nach anfallsverursachenden Läsionen und benachbarter neuronaler Funktion leisten (visuell beurteilte MRT, quantitative strukturelle und funktionelle MR-Verfahren sowie nuklearmedizinische Methoden). Die Bearbeitung aktueller wissenschaftlicher Fragen in der klinischen Epileptologie (zur Optimierung der bildgebenden Verfahren, zu Ursachen und Konsequenzen von epileptischen Anfällen, zur Pharmakoresistenz) mittels dieser Methoden wird diskutiert.

Abstract

Magnetic resonance imaging is the neuroimaging modality of first choice in epilepsy. A protocol incorporating coronal FLAIR- and T2-weighted images perpendicular to the long axis of the hippocampus increases the yield to detect epilepsy-associated lesions. The presence of an epileptogenic lesion decreases the probability to render the patient seizure free by anti-epileptic drugs only. The detection of a lesion, however, is a prerequisite for epilepsy surgery. To avoid postsurgical morbidity, identification of eloquent cortex in relation to the epileptogenic lesion is necessary prior to surgery. This review describes the clinical impact of different neuroimaging modalities on lesion detection and on the delineation of adjacent neuronal function (qualitative and quantitative structural and functional MR methods, methods using radioactive nuclids). Recent contributions of neuroimaging research to current topics in the field (increasing sensitivity of neuroimaging, differentiating causes from consequences of seizures, defining medical untreatability) are discussed.

Literatur

  • 1 Neuroimaging Commission of ILAE . Recommendations for neuroimaging of patients with epilepsy.  Epilepsia. 1997;  38, Suppl 10 1-2
  • 2 Wright N B. Imaging in epilepsy: a pediatric perspective.  The British Journal of Radiology. 2001;  74 575-580
  • 3 Bronen R A, Fulbright R K, Kim J H. et al . A systematic approach for interpreting MR images of the seizure patient.  Am J Radiol AJR. 1997;  169 241-247
  • 4 Kuzniecky R I, Jackson G D. Magnetic Resonance in Epilepsy. New York; Raven Press 1994: 43
  • 5 Semah F, Picot M C, Adam C. et al . Is the underlying cause of epilepsy a major prognostic factor for recurrence?.  Neurology. 1998;  51 1256-1262
  • 6 Rosenow F, Luders H. Presurgical evaluation of epilepsy.  Brain. 2001;  124 1683-1700
  • 7 Hagemann G, Krakow K, Woermann F G. Funktionelle MR-Verfahren in der Epilepsiediagnostik.  Klin Neurophysiol. 2000;  31 (s1) S49-56
  • 8 Woermann F G, Mertens M, Kruse B. et al . Funktionelle Magnetresonanztomographie: Grundlagen und Anwendungen bei Kindern mit Epilepsie.  Neuropädiatrie. 2003;  2 44-50
  • 9 ILAE Commission on Diagnostic Strategies . Recommendations for functional neuroimaging of persons with epilepsy.  Epilepsia. 2000;  41 1350-1356
  • 10 Spencer S S, Bautista R E. Functional neuroimaging in localization of the ictal onset zone.  Adv Neurol. 2000;  83 285-296
  • 11 Duncan J S. Neuroimaging methods to evaluate the etiology and consequences of epilepsy.  Epilepsy Res. 2002;  50 131-140
  • 12 Veith G. Anatomische Studie über die Ammonshornsklerose im Epileptikergehirn.  Dtsch Z Nervenheilk. 1970;  197 293-314
  • 13 Veith G. Der angeborene Hirnschaden - anatomische Grundlagen.  Mschr Kinderheilk. 1973;  121 252-259
  • 14 Lahl R, Villagran R, Teixeira W. Neuropathology of Focal Epilepsies: An Atlas. London; John Libbey 2003
  • 15 Li L M, Fish D R, Sisodiya S M. et al . High resolution magnetic resonance imaging in adults with partial or secondary generalised epilepsy attending a tertiary referral unit.  J Neurol Neurosurg Psychiatry. 1995;  59 384-387
  • 16 King M A, Newton M R, Jackson G D. et al . Epileptology of the first-seizure presentation: a clinical, electroencephalographic, and magnetic resonance imaging study of 300 consecutive patients.  Lancet. 1998;  352 1007-1011
  • 17 Wieshmann U C. Clinical application of neuroimaging in epilepsy.  J Neurol Neurosurg Psychiatry. 2003;  74 466-470
  • 18 Engel J. Introduction to temporal lobe epilepsy.  Epilepsy Res. 1996;  26 141-150
  • 19 Jackson G D, Berkovic S F, Tress B M. et al . Hippocampal sclerosis can be reliably detected by magnetic resonance imaging.  Neurology. 1990;  40 1869-1875
  • 20 Ostertun B. Radiologische Diagnostik bei Epilepsie.  Röfo Fortschr Geb Rontgenstr Neuen Bildgeb Verfahr. 1999;  170 235-245
  • 21 Bronen R A, Gupta V. Epilepsy. In: Atlas SW (ed) Magnetic Resonance Imaging of the Brain and Spine. Philadelphia; Lippincott, Williams and Wilkins 2002: 415-455
  • 22 Stevens J M. Neuroradiology in epilepsy. In: Scaravilli F (ed) Neuropathology of Epilepsy. Singapore; World Scientific 1998: 77-139
  • 23 Kim J H, Tien R D, Felsberg G J. et al . Clinical significance of asymmetry of the fornix and mamillary body on MR in hippocampal sclerosis.  AJNR Am J Neuroradiol. 1995;  16 509-515
  • 24 Meiners L C, Witkamp T D, Kort G A de. et al . Relevance of temporal lobe white matter changes in hippocampal sclerosis. Magnetic resonance imaging and histology.  Invest Radiol. 1999;  34 38-45
  • 25 Wiebe S, Blume W T, Girvin J P. et al . Effectiveness and efficiency of surgery for temporal lobe epilepsy study group. A randomized, controlled trial of surgery for temporal-lobe epilepsy.  N Engl J Med. 2001;  345 311-318
  • 26 Radhakrishnan K, So E L, Silbert P L. et al . Predictors of outcome of anterior temporal lobectomy for intractable epilepsy: a multivariate study.  Neurology. 1998;  51 465-471
  • 27 Yoon H H, Kwon H L, Mattson R H. et al . Long-term seizure outcome in patients initially seizure-free after resective epilepsy surgery.  Neurology. 2003;  61 445-450
  • 28 Kuzniecky R, Burgard S, Faught E. et al . Predictive value of magnetic resonance imaging in temporal lobe epilepsy surgery.  Arch Neurol. 1993;  50 65-69
  • 29 Bronen R A, Fulbright R K, King D. et al . Qualitative MR imaging of refractory temporal lobe epilepsy requiring surgery: correlation with pathology and seizure outcome after surgery.  AJR Am J Roentgenol. 1997;  169 875-882
  • 30 Berkovic S F, McIntosh A M, Kalnins R M. et al . Preoperative MRI predicts outcome of temporal lobectomy: an actuarial analysis.  Neurology. 1995;  45 1358-1363
  • 31 Cendes F, Cook M J, Watson C. et al . Frequency and characteristics of dual pathology in patients with lesional epilepsy.  Neurology. 1995;  45 2058-2064
  • 32 Kleihues P, Cavenee W K. WHO Classification of Tumours - Pathology + Genetics - Tumours of the Nervous System. Lyon; IARC Press 2000: 95ff
  • 33 Zentner J, Hufnagel A, Wolf H K. et al . Surgical treatment of temporal lobe epilepsy: clinical, radiological, and histopathological findings in 178 patients.  J Neurol Neurosurg Psychiatry. 1995;  58 666-673
  • 34 Zentner J, Hufnagel A, Ostertun B. et al . Surgical treatment of extratemporal epilepsy: clinical, radiologic, and histopathologic findings in 60 patients.  Epilepsia. 1996;  37 1072-1080
  • 35 Ostertun B, Wolf H K, Campos M G. et al . Dysembryoplastic neuroepithelial tumors: MR and CT evaluation.  AJNR Am J Neuroradiol. 1996;  17 419-430
  • 36 Daumas-Duport C, Varlet P, Bacha S. et al . Dysembryoplastic neuroepithelial tumors: nonspecific histological forms - a study of 40 cases.  J Neurooncol. 1999;  41 267-280
  • 37 Prayson R A, Estes M L, Morris H H. Coexistence of neoplasia and cortical dysplasia in patients presenting with seizures.  Epilepsia. 1993;  34 609-615
  • 38 Barkovich A J, Kuzniecky R I, Jackson G D. et al . Classification system for malformations of cortical development: update 2001.  Neurology. 2001;  57 2168-2178
  • 39 Barkovich A J. Pediatric Neuroimaging. Philadelphia; Lippincott, Williams + Wilkins 2000: 251ff
  • 40 Hagemann G, Redecker C, Witte O W. Kortikale Dysgenesien - aktuelle Klassifikation, kernspintomographische Diagnostik und klinische Übersicht.  Nervenarzt. 2000;  71 616-628
  • 41 Kloss S, Pieper T, Pannek H. et al . Epilepsy surgery in children with focal cortical dysplasia (FCD): results of long-term seizure outcome.  Neuropediatrics. 2002;  33 21-26
  • 42 Urbach H, Scheffler B, Heinrichsmeier T. et al . Focal cortical dysplasia of Taylor's balloon cell type: a clinicopathological entity with characteristic neuroimaging and histopathological features, and favorable postsurgical outcome.  Epilepsia. 2002;  43 33-40
  • 43 Tassi L, Colombo N, Garbelli R. et al . Focal cortical dysplasia: neuropathological subtypes, EEG, neuroimaging and surgical outcome.  Brain. 2002;  125 1719-1732
  • 44 Edwards J C, Wyllie E, Ruggeri P M. et al . Seizure outcome after surgery for epilepsy due to malformation of cortical development.  Neurology. 2000;  55 1110-1114
  • 45 Sisodiya S M, Free S L, Stevens J M. et al . Widespread cerebral structural changes in patients with cortical dysgenesis and epilepsy.  Brain. 1995;  118 1039-1050
  • 46 Sisodiya S M, Moran N, Free S L. et al . Correlation of widespread preoperative magnetic resonance imaging changes with unsuccessful surgery for hippocampal sclerosis.  Ann Neurol. 1997;  41 490-496
  • 47 Karenfort M, Kruse B, Freitag H. et al . Epilepsy surgery outcome in children with focal epilepsy due to tuberous sclerosis complex.  Neuropediatrics. 2002;  33 255-261
  • 48 Chugani D C, Chugani H T, Muzik O. et al . Imaging epileptogenic tubers in children with tuberous sclerosis complex using alpha-[11C]methyl-L-tryptophan positron emission tomography.  Ann Neurol. 1998;  44 858-866
  • 49 Marusic P, Najm I M, Ying Z. et al . Focal cortical dysplasias in eloquent cortex: functional characteristics and correlation with MRI and histopathologic changes.  Epilepsia. 2002;  43 27-32
  • 50 Janszky J, Ebner A, Kruse B. et al . Functional organization of the brain with malformations of cortical development.  Ann Neurol. 2003;  53 759-767
  • 51 Barkovich A J. Abnormal vascular drainage in anomalies of neuronal migration.  AJNR Am J Neuroradiol. 1988;  9 939-942
  • 52 Bronen R A, Knowlton R, Garwood M. et al . High resolution imaging in epilepsy.  Epilepsia. 2002;  43, Suppl 1 11-18
  • 53 Wyllie E. Catastrophic epilepsy in infants and children: identification of surgical candidates.  Epileptic Disord. 1999;  1 261-264
  • 54 Bien C G, Widman G, Urbach H. et al . The natural history of Rasmussen's encephalitis.  Brain. 2002;  125 1751-1759
  • 55 Devlin A M, Cross J H, Harkness W. et al . Clinical outcomes of hemispherectomy for epilepsy in childhood and adolescence.  Brain. 2003;  126 556-566
  • 56 Palmini A, Chandler C, Andermann F. et al . Resection of the lesion in patients with hypothalamic hamartomas and catastrophic epilepsy.  Neurology. 2002;  58 1338-1347
  • 57 Wieshmann U C, Free S L, Everitt A D. et al . Magnetic resonance imaging in epilepsy with a fast FLAIR sequence.  J Neurol Neurosurg Psychiatry. 1996;  61 357-361
  • 58 Serles W, Baumgartner C, Feichtinger M. et al .Richtlinien für ein standardisiertes MRT-Protokoll für Patienten mit epileptischen Anfällen in Österreich. Mitteilungen der österreichischen Sektion der ILAE. 2003 1: 2-13, http://www.medicalnet.at/oe.sektion-ILAE/ilae103.pdf
  • 59 Tuxhorn I. et al . Empfehlungen zur Bildgebung bei Patienten mit Epilepsie.  Epilepsieblätter. 2000;  13 92-94
  • 60 Ostertun B. Diagnostik bei Epilepsien. In: Sartor K (Hrsg) Neuroradiologie. Stuttgart; Thieme 2001: 66-69
  • 61 Oertzen J von, Urbach H, Jungbluth S. et al . Standard magnetic resonance imaging is inadequate for patients with refractory focal epilepsy.  J Neurol Neurosurg Psychiatry. 2002;  73 643-647
  • 62 Kretschmann H J, Weinrich W. Klinische Neuroanatomie und kranielle Bilddiagnostik - Atlas der Magnetresonanztomographie und Computertomographie. Stuttgart; Thieme 2003
  • 63 Duvernoy H M. The Human Hippocampus - Functional Anatomy, Vascularization and serial Sections with MRI. Berlin; Springer 1998
  • 64 Tamraz J C, Comair Y G. Atlas of Regional Anatomy of the Brain Using MRI - With Functional Correlations. Berlin; Springer 2000
  • 65 Duncan J S. Imaging and epilepsy.  Brain. 1997;  120 339-377
  • 66 Paesschen W Van. Quantitative MRI of mesial temporal structures in temporal lobe epilepsy.  Epilepsia. 1997;  38, Suppl 10 3-12
  • 67 Bastos A, Bernasconi A, Bernasconi N. et al . Structural image analysis in epilepsy.  Epilepsia. 2002;  43, Suppl 1 19-24
  • 68 Ashburner J, Friston K J. Voxel-based morphometry - the methods.  Neuroimage. 2000;  11 805-821
  • 69 Materka A, Strzelecki M. Texture Analysis Methods - A Review. Lodz; 1998, http://www.eletel.p.lodz.pl
  • 70 Jack C R, Sharbrough F W, Twomey C K. et al . Temporal lobe seizures: lateralization with MR volume measurements of the hippocampal formation.  Radiology. 1990;  175 423-429
  • 71 Jack C R, Sharbrough F W, Cascino G D. et al . Magnetic resonance image-based hippocampal volumetry: correlation with outcome after temporal lobectomy.  Ann Neurol. 1992;  31 138-146
  • 72 Moran N F, Lemieux L, Kitchen N D. et al . Extrahippocampal temporal lobe atrophy in temporal lobe epilepsy and mesial temporal sclerosis.  Brain. 2001;  124 167-175
  • 73 Jackson G D, Connelly A, Duncan J S. et al . Detection of hippocampal pathology in intractable partial epilepsy: increased sensitivity with quantitative magnetic resonance T2 relaxometry.  Neurology. 1993;  43 1793-1799
  • 74 Paesschen W Van, Sisodiya S, Connelly A. et al . Quantitative hippocampal MRI and intractable temporal lobe epilepsy.  Neurology. 1995;  45 2233-2240
  • 75 Woermann F G, Free S L, Koepp M J. et al . Voxel-by-voxel comparison of automatically segmented cerebral gray matter - A rater-independent comparison of structural MRI in patients with epilepsy.  Neuroimage. 1999;  10 373-384
  • 76 Kassubek J, Huppertz H J, Spreer J. et al . Detection and localization of focal cortical dysplasia by voxel-based 3-D MRI analysis.  Epilepsia. 2002;  43 596-602
  • 77 Bernasconi A, Antel S B, Collins D L. et al . Texture analysis and morphological processing of magnetic resonance imaging assist detection of focal cortical dysplasia in extra-temporal partial epilepsy.  Ann Neurol. 2001;  49 770-775
  • 78 Spencer S S, McCarthy G, Spencer D D. Diagnosis of medial temporal lobe seizure onset: relative specificity and sensitivity of quantitative MRI.  Neurology. 1993;  43 2117-2124
  • 79 Bernasconi A, Bernasconi N, Caramanos Z. et al . T2 relaxometry can lateralize mesial temporal lobe epilepsy in patients with normal MRI.  Neuroimage. 2000;  12 739-746
  • 80 Kent D L, Haynor D R, Longstreth W T. et al . The clinical efficacy of magnetic resonance imaging in neuroimaging.  Ann Intern Med. 1994;  120 856-871
  • 81 Knowlton R C, Laxer K D, Ende G. et al . Presurgical multimodality neuroimaging in electroencephalographic lateralized temporal lobe epilepsy.  Ann Neurol. 1997;  42 829-837
  • 82 Antel S B, Li L M, Cendes F. et al . Predicting surgical outcome in temporal lobe epilepsy patients using MRI and MRSI.  Neurology. 2002;  58 1505-1512
  • 83 Winkler P A, Herzog C, Henkel A. et al . Nicht-invasives Protokoll für die epilepsiechirurgische Behandlung fokaler Epilepsien.  Nervenarzt. 1999;  70 1088-1093
  • 84 Helmstaedter C, Kurthen M, Lux S. et al . Temporallappenepilepsie - längsschnittliche klinische, neuropsychologische und psychosoziale Entwicklung operativ und konservativ behandelter Patienten.  Nervenarzt. 2000;  71 629-642
  • 85 Jokeit H, Ebner A. Effects of chronic epilepsy on intellectual functions.  Prog Brain Res. 2002;  135 455-463
  • 86 Sutula T, Pitkänen A. Do Seizures Damage the Brain? (Progress in Brain Research). Amsterdam; Elsevier 2002
  • 87 Wieshmann U C, Woermann F G, Lemieux L. et al . Development of hippocampal atrophy: a serial magnetic resonance imaging study in a patient who developed epilepsy after generalized status epilepticus.  Epilepsia. 1997;  38 1238-1241
  • 88 Salmenpera T, Kalviainen R, Partanen K. et al . MRI volumetry of the hippocampus, amygdala, entorhinal cortex, and perirhinal cortex after status epilepticus.  Epilepsy Res. 2000;  40 155-170
  • 89 Jackson G, Paesschen W Van. Hippocampal sclerosis in the MR era.  Epilepsia. 2002;  43, Suppl 1 4-10
  • 90 Scott R C, King M D, Gadian D G. et al . Hippocampal Abnormalities after Prolonged Febrile Convulsion: A Longitudinal MRI Study.  Brain. 2003;  126 2551-2557
  • 91 Fernandez G, Effenberger O, Vinz B. et al . Hippocampal malformation as a cause of familial febrile convulsions and subsequent hippocampal sclerosis.  Neurology. 1998;  50 909-917
  • 92 Liu R S, Lemieux L, Bell G S. et al . Progressive neocortical damage in epilepsy.  Ann Neurol. 2003;  53 312-324
  • 93 Baxendale S A, Thompson P J, Kitchen N D. Postoperative hippocampal remnant shrinkage and memory decline: a dynamic process.  Neurology. 2000;  55 243-249
  • 94 Clusmann H, Schramm J, Kral T. et al . Prognostic factors and outcome after different types of resection for temporal lobe epilepsy.  J Neurosurg. 2002;  97 1131-1141
  • 95 Moran N F, Lemieux L, Maudgil D. et al . Analysis of temporal lobe resections in MR images.  Epilepsia. 1999;  40 1077-1084
  • 96 Schwartz T H, Spencer D D. Strategies for reoperation after comprehensive epilepsy surgery.  J Neurosurg. 2001;  95 615-623
  • 97 Elst L T Van, Woermann F G, Lemieux L. et al . Affective aggression in patients with temporal lobe epilepsy: a quantitative MRI study of the amygdala.  Brain. 2000;  123 234-243
  • 98 Trimble M R, Elst L T Van. The amygdala and psychopathology studies in epilepsy.  Ann N Y Acad Sci. 2003;  985 461-468
  • 99 Woermann F G, Elst L T Van, Koepp M J. et al . Reduction of frontal neocortical grey matter associated with affective aggression in patients with temporal lobe epilepsy: an objective voxel by voxel analysis of automatically segmented MRI.  J Neurol Neurosurg Psychiatry. 2000;  68 162-169
  • 100 Koch-Stoecker S. Personality disorders as predictors of severe postsurgical psychiatric complications in epilepsy patients undergoing temporal lobe resections.  Epilepsy Behav. 2002;  3 526-531
  • 101 Raab P, Pilatus U, Lanfermann H, Zanella F E. Grundlagen und klinische Anwendung der MR-Spektroskopie des Gehirns.  Akt Neurol. 2002;  29 53-62
  • 102 Hetherington H P, Gadian D G, Ng T C. Magnetic resonance spectroscopy in epilepsy: technical issues.  Epilepsia. 2002;  43, Suppl 1 25-31
  • 103 Cendes F, Knowlton R C, Novotny E. et al . Magnetic resonance spectroscopy in epilepsy: clinical issues.  Epilepsia. 2002;  43, Suppl 1 32-39
  • 104 Hugg J W, Laxer K D, Matson G B. et al . Neuron loss localizes human temporal lobe epilepsy by in vivo proton magnetic resonance spectroscopic imaging.  Ann Neurol. 1993;  34 788-794
  • 105 Connelly A, Paesschen W Van, Porter D A. et al . Proton magnetic resonance spectroscopy in MRI-negative temporal lobe epilepsy.  Neurology. 1998;  51 61-66
  • 106 Woermann F G, McLean M A, Bartlett P A. et al . Short echo time single-voxel 1H magnetic resonance spectroscopy in magnetic resonance imaging-negative temporal lobe epilepsy: different biochemical profile compared with hippocampal sclerosis.  Ann Neurol. 1999;  45 369-376
  • 107 Li L M, Cendes F, Antel S B. et al . Prognostic value of proton magnetic resonance spectroscopic imaging for surgical outcome in patients with intractable temporal lobe epilepsy and bilateral hippocampal atrophy.  Ann Neurol. 2000;  47 195-200
  • 108 Stefan H, Pauli E, Eberhardt K E. et al . MR-Spektroskopie und T2-Relaxometrie bei kryptogener Temporallappenepilepsie und postoperativer Prognose.  Nervenarzt. 2000;  71 282-287
  • 109 Stefan H, Eberhardt K E, Pauli E. et al . Bildgebende Verfahren bei pharmakoresistenter Temporallappenepilepsie. Vergleich von MR-Volumetrie und Multivoxel-MR-Spektroskopie zur Einschätzung der postoperativen Prognose.  Nervenarzt. 2001;  72 130-135
  • 110 Schulz R, Luders H O, Hoppe M. et al . Interictal EEG and ictal scalp EEG propagation are highly predictive of surgical outcome in mesial temporal lobe epilepsy.  Epilepsia. 2000;  41 564-570
  • 111 Cendes F, Andermann F, Dubeau F. et al . Normalization of neuronal metabolic dysfunction after surgery for temporal lobe epilepsy. Evidence from proton MR spectroscopic imaging.  Neurology. 1997;  49 1525-1533
  • 112 Suhy J, Laxer K D, Capizzano A A. et al . 1H MRSI predicts surgical outcome in MRI-negative temporal lobe epilepsy.  Neurology. 2002;  58 821-823
  • 113 Woermann F G, McLean M A, Bartlett P A. et al . Quantitative short echo time proton magnetic resonance spectroscopic imaging study of malformations of cortical development causing epilepsy.  Brain. 2001;  124 427-436
  • 114 Petroff O AC, Pan J W, Rothman D L. Magnetic resonance spectroscopic studies of neurotransmitters and energy metabolism in epilepsy.  Epilepsia. 2002;  43, Suppl 1 40-50
  • 115 Petroff O AC, Mattson R H, Behar K L. et al . Vigabatrin increases human brain homocarnosine and improves seizure control.  Ann Neurol. 1998;  44 948-952
  • 116 Hammeke T A, Bellgowan P S, Binder J R. FMRI: methodology - cognitive function mapping.  Adv Neurol. 2000;  83 221-233
  • 117 Binder J R, Achten E, Constable R T. et al . Functional MRI in epilepsy.  Epilepsia. 2002;  43, Suppl 1 51-63
  • 118 Woermann F G, Jokeit H, Luerding R. et al . Language lateralization by Wada test and fMRI in 100 patients with epilepsy.  Neurology. 2003;  61 699-701
  • 119 Hertz-Pannier L, Chiron C, Jambaque I. et al . Late plasticity for language in a child's non-dominant hemisphere: a pre- and post-surgery fMRI study.  Brain. 2002;  125 361-372
  • 120 Lehericy S, Cohen L, Bazin B. et al . Functional MR evaluation of temporal and frontal language dominance compared with the Wada test.  Neurology. 2000;  54 1625-1633
  • 121 Detre J A, Maccotta L, King D. et al . Functional MRI lateralization of memory in temporal lobe epilepsy.  Neurology. 1998;  50 926-932
  • 122 Bellgowan P S, Binder J R, Swanson S J. et al . Side of seizure focus predicts left medial temporal lobe activation during verbal encoding.  Neurology. 1998;  51 479-484
  • 123 Jokeit H, Okujava M, Woermann F G. Memory fMRI lateralizes temporal lobe epilepsy.  Neurology. 2001;  57 1786-1793
  • 124 Jack C R, Lee C C, Ward H A. et al .The role of functional MRI in planning perirolandic surgery. In: Moonen CTW, Bandettini PA (eds) Functional MRI. Berlin; Springer 1999: 539-550
  • 125 Jackson G D, Connelly A, Cross J H. et al . Functional magnetic resonance imaging of focal seizures.  Neurology. 1994;  44 850-856
  • 126 Detre J A, Sirven J I, Alsop D C. et al . Localization of subclinical ictal activity by functional magnetic resonance imaging: correlation with invasive monitoring.  Ann Neurol. 1995;  38 618-624
  • 127 Lemieux L, Salek-Haddadi A, Hoffmann A. et al . EEG-correlated functional MRI: recent methodologic progress and current issues.  Epilepsia. 2002;  43, Suppl 1 64-68
  • 128 Salek-Haddadi A, Lemieux L, Merschhemke M. et al . Functional magnetic resonance imaging of human absence seizures.  Ann Neurol. 2003;  53 663-667
  • 129 Wieshmann U C, Symms M R, Shorvon S D. Diffusion changes in status epilepticus.  Lancet. 1997;  350 493-494
  • 130 Diehl B, Najm I, Ruggieri P. et al . Postictal diffusion-weighted imaging for the localization of focal epileptic areas in temporal lobe epilepsy.  Epilepsia. 2001;  42 21-28
  • 131 Hufnagel A, Weber J, Marks S. et al . Brain diffusion after single seizures.  Epilepsia. 2003;  44 54-63
  • 132 Niendorf T. Methodische Grundlagen moderner Magnet-Resonanz-Bildgebungsverfahren und ihre Anwendung in der Neurologie.  Klin Neurophysiol. 2000;  31, S 1 2-17
  • 133 Bradley W G, Shey R B. MR imaging evaluation of seizures.  Radiology. 2000;  214 651-656
  • 134 Lux H D, Heinemann U, Dietzel I. Ionic changes and alterations in the size of the extracellular space during epileptic activity.  Adv Neurol. 1986;  44 619-639
  • 135 Wolf R L, Alsop D C, Levy-Reis I. et al . Detection of mesial temporal lobe hypoperfusion in patients with temporal lobe epilepsy by use of arterial spin labeled perfusion MR imaging.  AJNR Am J Neuroradiol. 2001;  22 1334-1341
  • 136 Warach S, Levin J M, Schomer D L. et al . Hyperperfusion of ictal seizure focus demonstrated by MR perfusion imaging.  AJNR Am J Neuroradiol. 1994;  15 965-968
  • 137 Neuroimaging Commission of ILAE . Recommendations for functional neuroimaging of persons with epilepsy.  Epilepsia. 2000;  41 1350-1356
  • 138 Kuwert T, Bartenstein P, Grunwald F. et al . Klinische Wertigkeit der Positronen-Emissions-Tomographie in der Neuromedizin - Positionspapier zu den Ergebnissen einer interdisziplinären Konsensuskonferenz.  Nervenarzt. 1998;  69 1045-1060
  • 139 Bartenstein P. Rezeptordarstellung mit der Positronen-Emissions-Tomographie - Anwendung in Klinik und Forschung.  Akt Neurol. 2002;  29 1-11
  • 140 Juengling F D, Kassubek J. Nuklearmedizinische Bildgebung in der Epilepsiediagnostik. Teil I: Perfusion und Metabolismus.  Nervenheilkunde. 2002;  21 420-425
  • 141 Kassubek J, Juengling F D. Nuklearmedizinische Bildgebung in der Epilepsiediagnostik. Teil II: Rezeptordiagnostik und funktionelle Bildgebung.  Nervenheilkunde. 2002;  21 475-481
  • 142 Koepp M J, Hammers A, Labbe C. et al . 11C-flumazenil PET in patients with refractory temporal lobe epilepsy and normal MRI.  Neurology. 2000;  54 332-339
  • 143 Hammers A, Koepp M J, Richardson M P. et al . Grey and white matter flumazenil binding in neocortical epilepsy with normal MRI. A PET study of 44 patients.  Brain. 2003;  126 1300-1318
  • 144 Kim S K, Na D G, Byun H S. et al . Focal cortical dysplasia: comparison of MRI and FDG-PET.  J Comput Assist Tomogr. 2000;  24 296-302
  • 145 Hwang S I, Kim J H, Park S W. et al . Comparative analysis of MR imaging, positron emission tomography, and ictal single-photon emission CT in patients with neocortical epilepsy.  AJNR Am J Neuroradiol. 2001;  22 937-946
  • 146 Frost J J, Mayberg H S, Fisher R S. et al . Mu-opiate receptors measured by positron emission tomography are increased in temporal lobe epilepsy.  Ann Neurol. 1988;  23 231-237
  • 147 Schlösser R. Erfassung von Neurotransmitterinteraktionen mit PET und SPECT durch pharmakologische Challenge-Paradigmen.  Nervenarzt. 2000;  71 9-18
  • 148 Bartenstein P A, Duncan J S, Prevett M C. et al . Investigation of the opioid system in absence seizures with positron emission tomography.  J Neurol Neurosurg Psychiatry. 1993;  56 1295-1302
  • 149 Koepp M J, Richardson M P, Brooks D J. et al . Focal cortical release of endogenous opioids during reading-induced seizures.  Lancet. 1998;  352 952-955
  • 150 Sostman H D, Spencer D D, Gore J C. et al . Preliminary observations on magnetic resonance imaging in refractory epilepsy.  Magn Reson Imaging. 1984;  2 301-306

Dr. F. G. Woermann

MRT-Abteilung · Krankenhaus Mara

Maraweg 21

33617 Bielefeld

Email: fgw@mara.de

    >