Zusammenfassung
Während hämatologische Neoplasien zunehmend besser therapeutisch angehbar sind, ist
die Behandlung solider Tumoren einschließlich des malignen Melanoms insbesondere im
metastasierten Stadium nach wie vor limitiert. Der Zuwachs an tumorimmunologischem
Wissen in den letzten 10 Jahren hat zur Identifikation von einer Vielzahl von Melanom-assoziierten
Tumorantigenen geführt als auch zur Entwicklung von unterschiedlichen Behandlungskonzepten.
Im Folgenden sollen die Fortschritte der letzten Jahre knapp zusammengefasst werden,
wobei das Hauptaugenmerk auf Peptide und dendritische Zellen gelegt wurde.
Abstract
Haematologic neoplasms can be treated more and more successfully in contrast to solid
tumors including malignant melanoma. Especially in the advanced stage of disease no
effective treatment options are available. Over the last decade a substantial surplus
of tumor immunological knowledge could be witnessed leading to the identification
of numerous tumor-associated antigens and consequently to the design of various novel
treatment regimens. In this chapter the progress which was made particularly in the
field of peptide and dendritic cell vaccinationis is briefly summarized.
Literatur
- 1
Schadendorf D.
Is there a standard for the palliative treatment of melanoma?.
Onkologie.
2002;
25
74-76
- 2
Bell D. et al .
Dendritic cells.
Adv Immunol.
1999;
72
255-324
- 3
Rosenberg S A.
Progress in human tumor immunology and immunotherapy.
Nature.
2001;
411
380-384
- 4
Wang R F.
Human tumor antigens: implications for cancer vaccine development.
J Mol Med.
1999;
77
640-655
- 5
Marchand M. et al .
Tumor regressions observed in patients with metastatic melanoma treated with an antigenic
peptide encoded by gene MAGE-3 and presented by HLA-A1.
Int J Cancer.
1999;
80
219-230
- 6
Rosenberg S A. et al .
Immunologic and therapeutic evaluation of a synthetic peptide vaccine for the treatment
of patients with metastatic melanoma.
Nat Med.
1998;
4
321-327
- 7
Jaeger E. et al .
GM-CSF enhances immune responses to melanoma-associated peptides in vivo.
Int J Cancer.
1996;
67
54-62
- 8
Scheibenbogen C. et al .
Phase II trial of vaccination with tyrosinase peptides and GM-CSF in melanoma.
J Immunotherapy.
2000;
23
275-281
- 9
Scheibenbogen C. et al .
Long-term freedom from recurrence in 2 stage IV melanoma patients following vaccination
with tyrosinase peptides.
Int J Cancer.
2002;
99
403-408
- 10
Wang F. et al .
Phase I trial of a MART-1 peptide vaccine with incomplete Freund's adjuvant for resected
high-risk melanoma.
Clin Cancer Res.
1999;
5
2756-2765
- 11
Lee P. et al .
Effects of IL-12 on the immune response to a multipeptide vaccine for resected melanoma.
J Clin Oncol.
2001;
19
3836-3847
- 12
Slingluff C. et al .
Phase I trial of a melanoma vaccine with gp100 280 -288 peptide and tetanus helper
peptide in adjuvant: immunologic and clinical outcome.
Clin Cancer Res.
2001;
7
3012-3024
- 13
Scheibenbogen C. et al .
Effects of granulocyte-macrophage colony-stimulating factor and foreign helper protein
as immunologic adjuvants on the T-cell response to vaccination with tyrosinase peptides.
Int J Cancer.
2003;
104
188-194
- 14
Banchereau J, Steinman R M.
Dendritic cells and the control of immunity.
Nature.
1998;
392
245-252
- 15
Romani N. et al .
Proliferating dendritic cell progenitors in human blood.
J Exp Med.
1994;
180
83-93
- 16
Jonuleit H. et al .
Pro-inflammatory cytokines and prostaglandins induce maturation of potent immunostimulatory
dendritic cells under fetal calf serum-free conditions.
Eur J Immunol.
1997;
27
3135-3142
- 17
Nestle F O. et al .
Dendritic cells: On the move from bench to bedside.
Nat Med.
2001;
7
761-765
- 18
Fernandez N C. et al .
Dendritic cells directly trigger NK cell function: cross talk relevant in innate anti-tumor
immune responses in vivo.
Nature Med.
1999;
5
405-411
- 19
Chikamatsu K. et al .
Generation of anti-p53 cytotoxic T lymphocytes from human peripheral blood using autologous
dendritic cells.
Clin Cancer Res.
1999;
5
1281-1288
- 20
Sun Y. et al .
Identification of a new HLA-A(*)0201-restricted T-cell epitope from the tyrosinase-related
protein 2 (TRP2) melanoma antigen.
Int J Cancer.
2000;
87
399-404
- 21
Sun Y. et al .
Expression of the proteasome activator PA28 rescues the presentation of a cytotoxic
T lymphocyte epitope on melanoma cells.
Cancer Res.
2002;
62
2875-2882
- 22
Storkus W P. et al .
Identification of T-cell epitopes: rapid isolation of class I-presented peptides from
viable cells by mild acid elution.
J Immunother.
1993;
14
94-103
- 23
Nair S K. et al .
Induction of carcinoembryonic antigen (CEA)-specific cytotoxic T-lymphocyte responses
in vitro using autologous dendritic cells loaded with CEA peptide or CEA RNA in patients
with metastatic malignancies expressing CEA.
Int J Cancer.
1999;
82
121-124
- 24
Thomas R. et al .
Immature human monocyte-derived dendritic cells migrate rapidly to draining lymph
nodes after intradermal injection for melanoma immunotherapy.
Melanoma Res.
1999;
9
474-481
- 25
Morse M A. et al .
Migration of human dendritic cells after injection in patients with metastatic malignancies.
Cancer Res.
1999;
59
56-58
- 26
Nestle F O. et al .
Vaccination of melanoma patients with peptide or tumor lysate pulsed dendritic cells.
Nat Med.
1998;
4
328-332
- 27
Thurner B. et al .
Vaccination with mage-3A1 peptide-pulsed mature, monocyte-derived dendritic cells
expands specific cytotoxic T cells and induces regression of some metastases in advanced
stage IV melanoma.
J Exp Med.
1999;
190
1669-1678
- 28
Schuler-Thurner B. et al .
Mage-3 and influenza-matrix peptide-specific cytotoxic T cells are inducible in terminal
stage HLA-A2.1+ melanoma patients by mature monocyte-derived dendritic cells.
J Immunol.
2000;
165
3492-3496
- 29
Dudley M E. et al .
Cancer regression and autoimmunity in patients after clonal repopulation with antitumor
lymphocytes.
Science.
2002;
298
850-854
- 30
Sun Y. et al .
Cell-based vaccination against melanoma - background, preliminary results, and perspective.
J Mol Med.
1999;
77
593-608
Prof. Dr. D. Schadendorf
Klinische Kooperationseinheit für Dermatoonkologie (DKFZ) an der Klinik für Dermatologie,
Venerologie und Allergologie, Universitätsklinikum Mannheim
Theodor-Kutzer-Ufer · 68135 Mannheim
Email: d.schadendorf@dkfz.de