Subscribe to RSS
DOI: 10.1055/s-2004-812659
© Georg Thieme Verlag Stuttgart · New York
Hitzeschockproteine, Immunkompetenz und Vakzinierung[1]
Heat shock proteins, immune competence and vaccinationPublication History
eingereicht: 3.7.2003
akzeptiert: 15.9.2003
Publication Date:
02 January 2004 (online)

Hitzeschockproteine (HSP) sind hochkonservierte, zytoprotektive Proteine, die unter Zellstress überexprimiert werden. Die Erforschung ihrer immunologischen Eigenschaften hat sich in den letzten Jahren zu einer neuen und vielversprechenden Disziplin der Immunologie etabliert. Zahlreiche präklinische Arbeiten zeigen, dass HSP, wenn sie sich im extrazellulären Milieu befinden, das angeborene und das adaptive Immunsystem effizient stimulieren können. Derzeit laufen HSP-basierte Vakzinierungsansätze in klinischen Studien der Phase II und III, um das „Proof of principle” und die anti-tumorale Immunantwort in vivo nachzuweisen.
Die Hyperthermie-Behandlung von Tumoren hat neben dem direkten zytotoxischen Effekt auch eine indirekte immunmodulatorische Wirkung, indem die Expression von HSP induziert wird und durch die Hyperthermie-bedingte Nekrose auch HSP freigesetzt werden.
Ziel der aktuellen Forschung ist, neue Erkenntnisse über die durch Hyperthermie-Behandlung induzierte Immunantwort zu erhalten, sowie Änderungen in der Tumorphysiologie besser zu verstehen, um die Effektivität der Hyperthermiebehandlung und der HSP-basierten Vakzinierungen für Patienten mit fortgeschrittenen Tumoren zu verbessern.
1 Dieses Forschungsprojekt wird durch das SFB455-Projekt B9 und das Krebshilfe-Projekt 7023011-Is/2 gefördert.
Literatur
- 1
Akira S.
Mammalian Toll-like receptors.
Curr Opin Immunol.
2003;
15
5-11
MissingFormLabel
- 2
Atanackovic D, Nierhaus A, Neumeier M, Hossfeld D K, Hegewisch-Becker S.
41.8 degrees C whole body hyperthermia as an adjunct to chemotherapy induces
prolonged T cell activation in patients with various malignant diseases.
Cancer Immunol Immunother.
2002;
51
603-613
MissingFormLabel
- 3
Asea A, Kraeft S K, Kurt-Jones E A. et al .
HSP70 stimulates cytokine production through a CD14 dependent pathway, demonstrating
a dual role as a chaperone and cytokine.
Nat Med.
2000;
6
435-442
MissingFormLabel
- 4
Asea A, Rehli M, Kabingu E. et al .
Novel signal transduction pathway utilized by extracellular HSP70: role of TLR2
and TLR4.
J Biol Chem.
2002;
277
15028-15034
MissingFormLabel
- 5
Banchereau J, Steinmann R M.
Dendritic cells and the control of immunity.
Nature.
1999;
392
245-252
MissingFormLabel
- 6
Basu S, Binder R J, Ramalingam T, Srivastava P K.
CD91 is a common receptor for heat shock proteins gp96, hsp90, hsp70, and
calreticulin.
Immunity.
2001;
14
303-313
MissingFormLabel
- 7
Bausinger H, Lipsker D, Ziylan U. et al .
Endotoxin-free heat-shock protein 70 fails to induce APC activation.
Eur J Immunol.
2002;
32
3708-3713
MissingFormLabel
- 8
Becker T, Hartl F U, Wieland F.
CD40, an extracellular receptor for binding and uptake of Hsp70-peptide complexes.
J Cell Biol.
2002;
158
1277-1285
MissingFormLabel
- 9
Belli F, Testori A, Rivoltini L. et al .
Vaccination of metastatic melanoma patients with autologous tumor-derived heat
shock protein gp96-peptide complexes: clinical and immunologic findings.
J Clin Oncol.
2002;
20
4169-4180
MissingFormLabel
- 10
Bethke K, Staib F, Distler M. et al .
Different efficiency of heat shock proteins (HSP) to activate human monocytes
and dendritic cells: superiority of HSP60.
J Immunol.
2002;
169
6141-6148
MissingFormLabel
- 11
Binder R J, Blachere N E, Srivastava P K.
Heat shock protein-chaperoned peptides but not free peptides introduced into
the cytosol are presented efficiently by major histocompatibility complex I
molecules.
J Biol Chem.
2001;
276
17 163-17 171
MissingFormLabel
- 12
Breloer M, More S, Dorner B, Fleischer B, von Bonin A.
Hitzeschockproteine als Gefahrensignale: HSP60 verstärkt die antigenspezifische
Aktivierung primärer T-Zellen.
Immunologie Aktuell.
2001;
2
64-66
MissingFormLabel
- 13
Buchner J, Walter S.
Molecular chaperones-Cellular machines for protein folding.
Angew Chem Int Ed.
2002;
41
1098-1113
MissingFormLabel
- 14
Bukau B, Horwich A L.
The HSP70 and HSP60 chaperone machines.
Cell.
1998;
92
351-366
MissingFormLabel
- 15
Castelli C, Ciupitu A M, Rini F. et al .
Human heat shock 70 peptide complexes specifically activate antimelanoma T cells.
Cancer Res.
2001;
61
222-227
MissingFormLabel
- 16
Chen W, Syldath U, Bellmann K, Burkart V, Kolb H.
Human 60 kDa heat shock protein. A danger signal to the innate immune response.
J Immunol.
1999;
162
3212-3219
MissingFormLabel
- 17
Ciupitu A M, Petersson M, Odonnell C L. et al .
Immunization with a lymphocytic choriomeningitis virus peptide mixed with heat
shock protein 70 results in protective antiviral immunity and specific cytotoxic
T lymphocytes.
J Exp Med.
1998;
187
685-691
MissingFormLabel
- 18
Delneste Y, Magistrelli G, Gauchat J F. et al .
Involvement of LOX-1 in Dendritic Cell-Mediated Antigen Cross-Presentation.
Immunitiy.
2002;
17
352-362
MissingFormLabel
- 19
Falk M, Issels R D.
Hyperthermia in oncology.
Int J Hyperthermia.
2001;
17
1-18
MissingFormLabel
- 20
Flohe S B, Bruggemann J, Lendemans S. et al .
Human heat shock protein 60 induces maturation of dendritic cells versus a Th1-promoting
phenotype.
J Immunol.
2003;
170
2340-2348
MissingFormLabel
- 21
Fuller J, Issels R, Slosman D, Guillet J G, Soussi T, Polla B S.
Cancer and the heat shock response.
Eur J Cancer.
1994;
12
1884-1891
MissingFormLabel
- 22
Gehrmann M, Pfister K, Hutzler P, Gastpar R, Margulis B, Multhoff G.
Effects of antineoplastic agents on cytoplasmic and membrane-bound heat shock
protein 70 (Hsp70) levels.
Biol Chem.
2002;
383
1715-1725
MissingFormLabel
- 23
Janetzki S, Palla D, Rosenhauer V, Lochs H, Lewis J J, Srivastava P K.
Immunization of cancer patients with autologous cancer-derived heat shock protein
gp96 preparation: a pilot study.
Int J Cancer.
2000;
88
232-238
MissingFormLabel
- 24
Janeway C A Jr., Medzhitov R.
Innate immune recognition.
Annu Rev Immunol.
2002;
20
197-216
MissingFormLabel
- 25
Keilholz U, Weber J, Finke J H. et al .
Immunologic monitoring of cancer vaccine therapy: results of a workshop sponsored
by the Society for Biological Therapy.
J Immunother.
2002;
25
97-138
MissingFormLabel
- 26
Kuppner M, Gastpar R, Gelwer S. et al .
The role of heat shock protein (HSP70) in dendritic cell maturation: HSP70 induces
the maturation of immature dendritic cells but reduces DC differentiation from
monocytes precursors.
Eur J Immunol.
2001;
31
1602-1609
MissingFormLabel
- 27
Matzinger P.
Tolerance, danger, and the extended family.
Annu Rev Immunol.
1994;
12
991-945
MissingFormLabel
- 28
Medzhitov R, Preston-Hurlburt P, Janeway C A.
A human homologue of the Drosophila Toll protein signals activation of adaptive
immunity.
Nature.
1997;
388
394-397
MissingFormLabel
- 29
Melcher A, Todryk S, Hardwick N, Ford M, Jacobson M, Vile R G.
Tumor immunogenicity is determined by the mechanism of cell death via induction
of heat shock proteins expression.
Nat Med.
1998;
4
581-587
MissingFormLabel
- 30
Milani V, Noessner E, Ghose S. et al .
Heat shock protein 70: role in antigen presentation and immune stimulation.
Int J Hyperthermia.
2002;
18
563-575
MissingFormLabel
- 31
Milarski K L, Morimoto R I.
Expression of human HSP70 during the synthetic phase of the cell cycle.
Proc Natl Acad Sci USA.
1986;
83
9517-9521 SE>
MissingFormLabel
- 32
Multhoff G.
Activation of natural killer cells by heat shock protein 70.
Int J Hyperthermia.
2002;
18
576-585
MissingFormLabel
- 33
Multhoff G, Botzler C, Jennen L, Schmidt J, Ellwart J, Issels R.
Heat shock protein 72 on tumour cells: a recognition structure for natural killer
cells.
J Immunol.
1997;
158
4341-4350
MissingFormLabel
- 34
Noessner E, Gastpar R, Milani V. et al .
Tumor-derived heat shock protein 70 peptide complexes are cross-presented by
human dendritic cells.
J Immunol.
2002;
169
5424-5432
MissingFormLabel
- 35
Parmiani G, Castelli C, Dalerba P. et al .
Cancer immunotherapy with peptide-based vaccines: what have we achieved? Where
are we going?.
J Natl Cancer Inst.
2002;
94
805-818
MissingFormLabel
- 36
Singh-Jasuja H, Hilf N, Arnold-Schild D, Schild H.
The role of heat shock proteins and their receptors in the activation of the
immune system.
Biol Chem.
2001;
382
629-636
MissingFormLabel
- 37
Singh-Jasuja H, Toes R E, Spee P. et al .
Cross-presentation of glycoprotein 96-associated antigens on major histocompatibility
complex class I molecules requires receptor-mediated endocytosis.
J Exp Med.
2000;
191
1965-1974
MissingFormLabel
- 38
Singh-Jasuja H, Scherer H U, Hilf N, Arnold-Schild D, Rammensee H G, Toes R EM, Schild A.
The heat shock protein gp96 induces maturation of dendritic cells and down regulation
of its receptor.
Eur J Immunol.
2000;
30
2211-2215
MissingFormLabel
- 39
Somersan S, Larsson M, Fonteneau J, Basu S, Srivastava P, Bhardway N.
Primary tumor tissue lysates are enriched in heat shock proteins and induce
the maturation of human dendritic cells.
J Immunol.
2001;
167
4844-4852
MissingFormLabel
- 40
Srivastava P K.
Immunotherapy of human cancer: lessons from mice.
Nature Immunology.
2000;
1
363-366
MissingFormLabel
- 41
Srivastava P K, DeLeo A B, Old L J.
Tumor rejection antigens of chemically induced sarcomas in inbred mice.
Proc Natl Acad Sci USA.
1986;
83
3407-3411
MissingFormLabel
- 42
Srivastava P, Menoret A, Basu S, Binder R, McQuade K.
Heat shock protein come of age: primitive functions acquire new roles in an
adaptive world.
Immunity.
1998;
8
657-665
MissingFormLabel
- 43
Srivastava P K, Udono H.
Heat shock protein-peptide complexes in cancer immunotherapy.
Curr Opin Immunol.
1994;
6
728-732
MissingFormLabel
- 44
Stewart J R, Gibbs F A.
Hyperthermia in the treatment of cancer. Perspectives on its promise and its
problems.
Cancer.
1984;
54
2823-2830
MissingFormLabel
- 45
Udono H, Srivastava P K.
Heat shock protein 70-associated peptides elicit specific cancer immunity.
J Exp Med.
1993;
178
1391-96
MissingFormLabel
- 46
Udono H, Srivastava P K.
Comparison of tumor-specific immunogenicities of stress-induced proteins gp96,
HSP90 and HSP70.
J Immunol.
1994;
152
5398-5403
MissingFormLabel
- 47
Vabulas R M, Ahmad-Nejad P, da Costa C. et al .
Endocytosed HSP60 s use toll-like receptor 2 (TLR2) and TLR4 to activate the
toll/interleukin-1 receptor signaling pathway in innate immune cells.
J Biol Chem.
2001;
276
31 332-31 339
MissingFormLabel
- 48
Vabulas R M, Ahmad-Nejad P, Ghose S, Kirschning C J, Issels R D, Wagner H.
HSP70 as endogenous stimulus of Toll/interleukin-1 receptor signal pathway.
J Biol Chem.
2002;
277
15 107-15 112
MissingFormLabel
- 49
Vabulas R M, Braedel S, Hilf N. et al .
The endoplasmic reticulum-resident heat shock protein Gp96 activates dendritic
cells via the Toll-like receptor 2/4 pathway.
J Biol Chem.
2002;
277
20 847-20 853
MissingFormLabel
- 50
Vabulas R M, Wagner H, Schild H.
Heat shock proteins as Ligands for Toll-like receptors.
Curr Top Microbiol Immunol.
2002;
270
169-184
MissingFormLabel
- 51
Wang X Y, Kazim L, Repasky E, Subjeck J.
Characterization of heat shock protein 110 and glucose-regulated 170 as cancer
vaccine and the effect of fever-range hyperthermia on vaccine activity.
J Immunol.
2001;
165
490-497
MissingFormLabel
- 52
Wells A D, Malkovsky M.
Heat shock proteins, tumour immunogenicity and antigen presentation: an integrated
view.
Immunol Today.
2000;
21
129-132
MissingFormLabel
1 Dieses Forschungsprojekt wird durch das SFB455-Projekt B9 und das Krebshilfe-Projekt 7023011-Is/2 gefördert.
Valeria Milani
KKG Hyperthermie, Medizinische Klinik III, Klinikum Großhadern
Marchioninistraße 15
81377 München
Phone: 089/7099403
Fax: 089/7099450
Email: milani@gsf.de