Horm Metab Res 2004; 36(2): 119-125
DOI: 10.1055/s-2004-814223
Original Clinical
© Georg Thieme Verlag Stuttgart · New York

Cinnamon Extract Prevents the Insulin Resistance Induced by a High-fructose Diet

B.  Qin 1 , M.  Nagasaki 2 , M.  Ren 3 , G.  Bajotto 1 , Y.  Oshida 1, 2 , Y.  Sato 1, 2
  • 1Department of Sports Medicine, Graduate School of Medicine, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
  • 2Research Center of Health, Physical Fitness and Sports, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
  • 3Department of Visual Neuroscience, Graduate School of Medicine, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
Further Information

Publication History

Received 16 June 2003

Accepted after revision 18 August 2003

Publication Date:
05 March 2004 (online)

Abstract

The aim of this study was to determine whether cinnamon extract (CE) would improve the glucose utilization in normal male Wistar rats fed a high-fructose diet (HFD) for three weeks with or without CE added to the drinking water (300 mg/kg/day). In vivo glucose utilization was measured by the euglycemic clamp technique. Further analyses on the possible changes in insulin signaling occurring in skeletal muscle were performed afterwards by Western blotting. At 3 mU/kg/min insulin infusions, the decreased glucose infusion rate (GIR) in HFD-fed rats (60 % of controls, p < 0.01) was improved by CE administration to the same level of controls (normal chow diet) and the improving effect of CE on the GIR of HFD-fed rats was blocked by approximately 50 % by N-monometyl-L-arginine. The same tendency was found during the 30 mU/kg/min insulin infusions. There were no differences in skeletal muscle insulin receptor (IR)-β, IR substrate (IRS)-1, or phosphatidylinositol (PI) 3-kinase protein content in any groups. However, the muscular insulin-stimulated IR-β and IRS-1 tyrosine phosphorylation levels and IRS-1 associated with PI 3-kinase in HFD-fed rats were only 70 ± 9 %, 76 ± 5 %, and 72 ± 6 % of controls (p < 0.05), respectively, and these decreases were significantly improved by CE treatment. These results suggest that early CE administration to HFD-fed rats would prevent the development of insulin resistance at least in part by enhancing insulin signaling and possibly via the NO pathway in skeletal muscle.

References

  • 1 Annual Change of Intake of Foods by Food Groups. The present condition of national nutrition (Japan). 2000: 134-137
  • 2 Elliott S S, Keim N L, Stern J S, Teff K, Havel P J. Fructose, weight gain, and the insulin resistance syndrome.  Am J Clin Nutr. 2002;  76 911-922
  • 3 Hamman R F. Genetic and environmental determinants of non-insulin-dependent diabetes mellitus (NIDDM).  Diabetes Metab Rev. 1992;  8 287-338
  • 4 Kahn C R. Insulin resistance, insulin insensitivity, and insulin unresponsiveness: a necessary distinction.  Metabolism. 1978;  27 1893-1902
  • 5 Beck-Nielsen H, Pedersen O, Lindskov H O. Impaired cellular insulin binding and insulin sensitivity induced by high-fructose feeding in normal subjects.  Am J Clin Nutr. 1980;  33 273-278
  • 6 Hallfrisch J. et al . Effects of dietary fructose on plasma glucose and hormone responses in normal and hyperinsulinemic men.  J Nutr. 1983;  113 1819-1826
  • 7 Hwang I S, Ho H, Hoffman B B, Reaven G M. Fructose-induced insulin resistance and hypertension in rats.  Hypertension. 1987;  10 512-516
  • 8 Ueno M. et al . A high-fructose diet induces changes in pp185 phosphorylation in muscle and liver of rats.  Braz J Med Biol Res. 2000;  33 1421-1427
  • 9 Bezerra R M. et al . A high fructose diet affects the early steps of insulin action in muscle and liver of rats.  J Nutr. 2000;  130 1531-1535
  • 10 Lee M K. et al . Metabolic effects of troglitazone on fructose-induced insulin resistance in the rat.  Diabetes. 1994;  43 1435-1439
  • 11 Nikkila E A, Ojala K. Induction of hyperglyceridemia by fructose in the rat.  Life Sci. 1965;  4 937-943
  • 12 Thorburn A W, Storlien L H, Jenkins A B, Khouri S, Kraegen E W. Fructose-induced in vivo insulin resistance and elevated plasma triglyceride levels in rats.  Am J Clin Nutr. 1989;  49 1155-1163
  • 13 Toriizuka K. Basic lecture of Kampo medicine: Pharmacological effect of cinnamon.  Kampo medicine. 1998;  11 431-436
  • 14 Broadhurst C L, Polansky M M, Anderson R A. Insulin-like biological activity of culinary and medicinal plant aqueous extracts in vitro.  J Agric Food Chem. 2000;  48 849-852
  • 15 Khan A, Bryden N A, Polansky M M, Anderson R A. Insulin potentiating factor and chromium content of selected foods and spices.  Biol Trace Elem Res. 1990;  24 183-188
  • 16 Imparl-Radosevich J. et al . Regulation of PTP-1 and insulin receptor kinase by fractions from cinnamon: implications for cinnamon regulation of insulin signalling.  Horm Res. 1998;  50 177-182
  • 17 Jarvill-Taylor K J, Anderson R A, Graves D J. A hydroxychalcone derived from cinnamon functions as a mimetic for insulin in 3T3-L1 adipocytes.  J Am Coll Nutr. 2001;  20 327-336
  • 18 Qin B. et al . Cinnamon extract (Traditional herb) potentiates in vivo insulin-regulated glucose utilization via enhancing insulin signaling in rats.  Diabetes Res Clin Pract. 2003;  62 139-148
  • 19 Hu X. et al . Effect of Gosha-jinki-gan (Chinese herbal medicine: Niu-Che-Sen-Qi-Wan) on insulin resistance in streptozotocin-induced diabetic rats.  Diabetes Res Clin Pract. 2003;  59 103-111
  • 20 Qin B. et al . Effects of Keishi-ka-jutsubu-to (traditional herbal medicine: Gui-zhi-jia-shu-fu-tang), on in vivo insulin action in streptozotocin-induced diabetic rats.  Life Sciences. 2003;  73 2687-2701
  • 21 Kashiwagi A. et al . Free radical production in endothelial cells as a pathogenetic factor for vascular dysfunction in the insulin resistance state.  Diabetes Res Clin Pract. 1999;  45 199-203
  • 22 Shinozaki K. et al . Abnormal biopterin metabolism is a major cause of impaired endothelium-dependent relaxation through nitric oxide/O2-imbalance in insulin-resistant rat aorta.  Diabetes. 1999;  48 2437-2445
  • 23 Damiano P. et al . Impaired response to insulin associated with protein kinase C in chronic fructose-induced hypertension.  Blood Press. 2002;  11 345-351
  • 24 Oshida Y. et al . Nitric oxide decreases insulin resistance induced by high-fructose feeding.  Horm Metab Res. 2000;  32 339-342
  • 25 DeFronzo R A, Bonadonna R C, Ferrannini E. Pathogenesis of NIDDM. A balanced overview.  Diabetes Care. 1992;  15 318-368
  • 26 DeFronzo R A. Lilly lecture 1987. The triumvirate: beta-cell, muscle, liver. A collusion responsible for NIDDM.  Diabetes. 1988;  37 667-687
  • 27 Gardiner S M, Kemp P A, March J E, Bennett T. Cardiac and regional haemodynamics, inducible nitric oxide synthase (NOS) activity, and the effects of NOS inhibitors in conscious, endotoxaemic rats.  Br J Pharm. 1995;  116 2005-2016
  • 28 Nagasaki M. et al . Exercise training prevents maturation-induced decreases in insulin receptor substrate-1 and phosphatidylinositol 3-kinase in rat skeletal muscle.  Metabolism. 2000;  49 954-959
  • 29 Goodyear L J. et al . Insulin receptor phosphorylation, insulin receptor substrate-1 phosphorylation, and phosphatidylinositol 3-kinase activity are decreased in intact skeletal muscle strips from obese subjects.  J Clin Invest. 1995;  95 2195-2204
  • 30 Olefsky J, Kolterman O, Scarlett J. Insulin action and resistance in obesity and noninsulin-dependent type II diabetes mellitus.  American Journal of Physiology. 1999;  243 E15-30
  • 31 Cardillo C. et al . Insulin stimulates both endothelin and nitric oxide activity in the human forearm.  Circulation. 1999;  100 820-825
  • 32 Petrie J R, Ueda S, Webb D J, Elliott H L, Connell J M. Endothelial nitric oxide production and insulin sensitivity. A physiological link with implications for pathogenesis of cardiovascular disease.  Circulation. 1996;  93 1331-1333
  • 33 Balon T W, Nadler J L. Evidence that nitric oxide increases glucose transport in skeletal muscle.  J Appl Physiol. 1997;  82 359-363
  • 34 Etgen G J Jr, Fryburg D A, Gibbs E M. Nitric oxide stimulates skeletal muscle glucose transport through a calcium/contraction- and phosphatidylinositol-3-kinase-independent pathway.  Diabetes. 1997;  46 1915-1919
  • 35 Roy D, Perreault M, Marette A. Insulin stimulation of glucose uptake in skeletal muscles and adipose tissues in vivo is NO dependent.  American Journal of Physiology. 1998;  274 E692-699
  • 36 Shankar R. et al . Central nervous system nitric oxide synthase activity regulates insulin secretion and insulin action.  Journal of Clinical Investigation. 1998;  102 1403-1412
  • 37 Li L. et al . Role of nitric oxide in insulin action in STZ-induced diabetic rats - use of euglycaemic clamp technique.  The Journal of Japan Diabetes Society. 2000;  43 301-306
  • 38 Smith D. et al . In vivo glucose metabolism in the awake rat: tracer and insulin clamp studies.  Metabolism. 1987;  36 1167-1174
  • 39 Montagnani M, Ravichandran L, Chen H, Esposito D, Quon M. Insulin receptor substrate-1 and phosphoinositide-dependent kinase-1 are required for insulin-stimulated production of nitric oxide in endothelial cells.  Molecular Endocrinology. 2002;  16 1931-1942
  • 40 Zeng G. et al . Roles for insulin receptor, PI3-kinase, and Akt in insulin-signaling pathways related to production of nitric oxide in human vascular endothelial cells.  Circulation. 2000;  101 1539-1545
  • 41 Zeng G, Quon M J. Insulin-stimulated production of nitric oxide is inhibited by wortmannin. Direct measurement in vascular endothelial cells.  J Clin Invest. 1996;  98 894-898
  • 42 Montagnani M, Chen H, Barr V A, Quon M J. Insulin-stimulated activation of eNOS is independent of Ca2+ but requires phosphorylation by Akt at Ser (1179).  J Biol Chem. 2001;  276 30 392-30 398
  • 43 Zeng G, Quon M J. Insulin-stimulated production of nitric oxide is inhibited by wortmannin. Direct measurement in vascular endothelial cells.  Journal of Clinical Investigation. 1996;  98 894-898
  • 44 DeFronzo R A. et al . The effect of insulin on the disposal of intravenous glucose. Results from indirect calorimetry and hepatic and femoral venous catheterization.  Diabetes. 1981;  30 1000-1007
  • 45 DeFronzo R A, Gunnarsson R, Bjorkman O, Olsson M, Wahren J. Effects of insulin on peripheral and splanchnic glucose metabolism in noninsulin-dependent (type II) diabetes mellitus.  J Clin Invest. 1985;  76 149-155
  • 46 Handberg A, Vaag A, Vinten J, Beck-Nielsen H. Decreased tyrosine kinase activity in partially purified insulin receptors from muscle of young, non-obese first degree relatives of patients with type 2 (non-insulin-dependent) diabetes mellitus.  Diabetologia. 1993;  36 668-674
  • 47 Pratipanawatr W. et al . Skeletal muscle insulin resistance in normoglycemic subjects with a strong family history of type 2 diabetes is associated with decreased insulin-stimulated insulin receptor substrate-1 tyrosine phosphorylation.  Diabetes. 2001;  50 2572-2578
  • 48 Storgaard H. et al . Insulin signal transduction in skeletal muscle from glucose-intolerant relatives of type 2 diabetic patients [corrected].  Diabetes. 2001;  50 2770-2778
  • 49 Cusi K. et al . Insulin resistance differentially affects the PI 3-kinase- and MAP kinase-mediated signaling in human muscle.  J Clin Invest. 2000;  105 311-320
  • 50 Cheatham B. et al . Phosphatidylinositol 3-kinase activation is required for insulin stimulation of pp70 S6 kinase, DNA synthesis, and glucose transporter translocation.  Mol Cell Biol. 1994;  14 4902-4911
  • 51 Okada T, Kawano Y, Sakakibara T, Hazeki O, Ui M. Essential role of phosphatidylinositol 3-kinase in insulin-induced glucose transport and antilipolysis in rat adipocytes. Studies with a selective inhibitor wortmannin.  J Biol Chem. 1994;  269 3568-3573
  • 52 Folli F, Saad M J, Backer J M, Kahn C R. Regulation of phosphatidylinositol 3-kinase activity in liver and muscle of animal models of insulin-resistant and insulin-deficient diabetes mellitus.  J Clin Invest. 1993;  92 1787-1794

Y. Sato,M. D., Ph. D. 

Research Center of Health · Physical Fitness and Sports · Nagoya University

Furo-cho · Chikusa-ku · Nagoya 464-8601 · Japan

Phone: + 81 (52) 789 39 62

Fax: + 81 (52) 789 39 57 ·

Email: ysato@med.nagoya-u.ac.jp

    >