Abstract
Microwave activation as a non-conventional energy source has become a very popular
and useful technology in organic chemistry. The heating effect utilized in microwave
assisted organic transformations is due mainly to dielectric polarization, although
conduction loses can also be important particularly at higher temperatures. Only dipolar
and interfacial polarization are important factors in heating effects associated with
microwave irradiation. The short reaction times and expanded reaction range offered
by microwave assisted organic syntheses are suited to the increased demand of the
chemical industry. There are two types of microwave reactions, solvent-free and solution-phase.
Although microwave-assisted reactions are widely applied in other domains of organic
synthesis, their use in the area of carbohydrates has been limited. The purpose of
this review is to highlight the applications of microwave irradiation in the synthesis
of carbohydrates.
Key words
carbohydrate - synthesis - microwave irradiation - oligosaccharides
References
<A NAME="RA34104ST-1A">1a</A>
DRL Publication No. 345-A.
<A NAME="RA34104ST-1B">1b</A>
Presented in part in the XVIII
th
National Carbohydrate Conference, Calcutta, India, November 5-7, 2003.
<A NAME="RA34104ST-2">2</A>
Gedye RN.
Smith F.
Westaway K.
Ali H.
Baldisera L.
Laberge L.
Rousell J.
Tetrahedron Lett.
1986,
27:
279
<A NAME="RA34104ST-3">3</A>
Lidström P.
Tierney J.
Wathey B.
Westman J.
Tetrahedron
2001,
57:
9225
<A NAME="RA34104ST-4">4</A>
Perreux L.
Loupy A.
Tetrahedron
2001,
57:
9199
<A NAME="RA34104ST-5">5</A>
Larhed M.
Hallberg A.
Drug Discovery Today
2001,
6:
406
<A NAME="RA34104ST-6">6</A>
Loupy A.
Petit A.
Hamelin J.
Texier-Boullet F.
Jacquault P.
Mathé D.
Synthesis
1998,
1213
<A NAME="RA34104ST-7">7</A>
Caddick S.
Tetrahedron
1995,
51:
10403
<A NAME="RA34104ST-8A">8a</A>
Mingos DMP.
Baghurst DR. In Microwave Enhanced Chemistry
Kingston HM.
Haswell SJ.
American Chemical Society;
Washington DC:
1997.
p.4-7
<A NAME="RA34104ST-8B">8b</A>
Zenatti P.
Forgeat M.
Marchand C.
Rabette P.
Technologie et stratégie Bulletin de l’OTS
1992,
55:
4
<A NAME="RA34104ST-9">9</A>
Limousin C.
Cléophax J.
Petit A.
Loupy A.
Lukacs G.
J. Carbohydr. Chem.
1997,
16:
327
<A NAME="RA34104ST-10A">10a</A>
Ferrier RJ.
Prasad N.
J. Chem. Soc. C
1969,
570
<A NAME="RA34104ST-10B">10b</A>
Ferrier RJ.
Ciment DM.
J. Chem. Soc. C
1966,
441
<A NAME="RA34104ST-10C">10c</A>
Ferrier RJ.
Prasad N.
J. Chem. Soc. C
1969,
581
<A NAME="RA34104ST-11">11</A>
Williams NR.
Wander JD.
The Carbohydrates. Chemistry and Biochemistry
Academic Press;
New York:
1980.
p.761-798
<A NAME="RA34104ST-12">12</A>
Sowmya S.
Balasubramanian KK.
Synth. Commun.
1994,
24:
2097
<A NAME="RA34104ST-13">13</A>
Lutz RP.
Chem. Rev.
1984,
84:
205
<A NAME="RA34104ST-14A">14a</A>
Giguere RJ.
Bray TL.
Duncan SM.
Majetich G.
Tetrahedron Lett.
1986,
27:
4945
<A NAME="RA34104ST-14B">14b</A>
Abramovitch RA.
Org. Prep. Proced. Int.
1991,
23:
683
<A NAME="RA34104ST-14C">14c</A>
Srikrishna A.
Nagaraju S.
J. Chem. Soc., Perkin Trans. 1
1992,
311
<A NAME="RA34104ST-15">15</A>
de Oliveira RN.
de Freitas Filho JR.
Srivastava RM.
Tetrahedron Lett.
2002,
43:
2141
<A NAME="RA34104ST-16">16</A>
Gelo-Pujic M.
Guibé-Jampel E.
Loupy A.
Trincone A.
J. Chem. Soc., Perkin Trans. 1
1997,
1001
<A NAME="RA34104ST-17">17</A>
Lewis MD.
Cha JK.
Kishi Y.
J. Am. Chem. Soc.
1982,
104:
4976
<A NAME="RA34104ST-18">18</A>
Paterson L.
Keown LE.
Tetrahedron Lett.
1997,
38:
5727
<A NAME="RA34104ST-19">19</A>
Horita K.
Sakurai Y.
Nagasawa M.
Hachiya S.
Yonemitsu O.
Synlett
1994,
43
<A NAME="RA34104ST-20">20</A>
Suhadolnik RJ.
Nucleoside Antibiotics
Wiley Interscience;
New York:
1970.
<A NAME="RA34104ST-21">21</A>
Weatherman RV.
Mortell KH.
Chervenak M.
Kiessling LL.
Toone E.
J. Biochem.
1996,
35:
3619
<A NAME="RA34104ST-22">22</A>
Csiba M.
Cleophax J.
Loupy A.
Malthête J.
Gero SD.
Tetrahedron Lett.
1993,
34:
1787
<A NAME="RA34104ST-23">23</A>
Bailliez V.
de Figueiredo RM.
Olesker A.
Cléophax J.
Synthesis
2003,
1015
<A NAME="RA34104ST-24">24</A>
Ley SV.
Mynett DM.
Synlett
1993,
793
<A NAME="RA34104ST-25">25</A>
Gelo-Pujic M.
Guibé-Jampel E.
Loupy A.
Galema SA.
Mathé D.
J. Chem. Soc., Perkin Trans. 1
1996,
2777
<A NAME="RA34104ST-26A">26a</A>
Granger DL.
Yamamoto KI.
Ribi E.
J. Immunol.
1976,
116:
482
<A NAME="RA34104ST-26B">26b</A>
Noll H.
Bloch H.
Asselineau J.
Lederer E.
Biochem. Biophys. Acta
1956,
20:
299
<A NAME="RA34104ST-27">27</A>
Nüchter M.
Ondruschka B.
Lautenschläger W.
Synth. Commun.
2001,
31:
1277
<A NAME="RA34104ST-28">28</A>
Koenigs W.
Knorr E.
Ber. Dtsch. Chem. Ges.
1901,
34:
957
<A NAME="RA34104ST-29">29</A>
Shanmugasundaram B.
Bose AK.
Balasubramanian KK.
Tetrahedron Lett.
2002,
43:
6795
<A NAME="RA34104ST-30">30</A>
Das SK.
Reddy KA.
Roy J.
Synlett
2003,
1607
<A NAME="RA34104ST-31">31</A>
Chang M.
Meyers HV.
Nakanishi K.
Ojika M.
Park JH.
Park HM.
Takeda R.
Vazquez JT.
Wiesler WT.
Pure Appl. Chem.
1989,
61:
1193
<A NAME="RA34104ST-32">32</A>
Mohan H.
Gemma E.
Ruda K.
Oscarson S.
Synlett
2003,
1255
<A NAME="RA34104ST-33">33</A>
Mathew F.
Jayaprakash KN.
Fraser-Reid B.
Mathew J.
Scicinski J.
Tetrahedron Lett.
2003,
44:
9051
<A NAME="RA34104ST-34A">34a</A>
Corey EJ.
Fuchs PL.
Tetrahedron Lett.
1972,
3769
<A NAME="RA34104ST-34B">34b</A>
Suda M.
Fukushima A.
Tetrahedron Lett.
1981,
22:
759
<A NAME="RA34104ST-35">35</A>
de Figueiredo RM.
Bailliez V.
Dubreuil D.
Olesker A.
Cleophax J.
Synthesis
2003,
2831
<A NAME="RA34104ST-36">36</A>
Lakhrissi Y.
Taillefumier C.
Lakhrissi M.
Chapleur Y.
Tetrahedron: Asymmetry
2000,
11:
417
<A NAME="RA34104ST-37">37</A>
Das SK.
Reddy KA.
Abbineni C.
Roy J.
Rao KVLN.
Sachwani RH.
Iqbal J.
Tetrahedron Lett.
2003,
44:
4507
<A NAME="RA34104ST-38">38</A>
Ghosh R.
De D.
Shown B.
Maiti SB.
Carbohydr. Res.
1999,
321:
1 ; and references therein.
<A NAME="RA34104ST-39">39</A>
Straathof AJJ.
van Bekkum H.
Kieboom APG.
Recl. Trav. Chim. Pays-Bas
1988,
107:
647
<A NAME="RA34104ST-40">40</A>
Baptistella LHB.
Neto AZ.
Onaga H.
Godoi EAM.
Tetrahedron Lett.
1993,
34:
8407
<A NAME="RA34104ST-41">41</A>
Morcuende A.
Valverde S.
Herradón B.
Synlett
1994,
89
<A NAME="RA34104ST-42">42</A>
Söderberg E.
Westman J.
Oscarson S.
J. Carbohydr. Chem.
2001,
20:
397
<A NAME="RA34104ST-43">43</A>
Salanski P.
Descotes G.
Bouchu A.
Queneau Y.
J. Carbohydr. Chem.
1987,
17:
129
<A NAME="RA34104ST-44">44</A>
Limousin C.
Olesker A.
Cléophax J.
Petit A.
Loupy A.
Lukacs G.
Carbohydr. Res.
1998,
312:
23
<A NAME="RA34104ST-45">45</A>
Chirakal R.
Mccarry B.
Lonergan M.
Firnau G.
Garnett S.
Appl. Radiat. Isot.
1995,
46:
149
<A NAME="RA34104ST-46">46</A>
Limousin C.
Cléophax J.
Loupy A.
Petit A.
Tetrahedron
1998,
54:
13567
<A NAME="RA34104ST-47">47</A>
Yu B.
Xie J.
Deng S.
Hui Y.
J. Am. Chem. Soc.
1999,
121:
12196
<A NAME="RA34104ST-48">48</A>
Das, S. K.; Reddy, K. A.; Krovvidi, V. L. N. R. unpublished results.
<A NAME="RA34104ST-49">49</A>
Singh V.
Tiwari A.
Tripathi DN.
Malviya T.
Tetrahedron Lett.
2003,
44:
7295
<A NAME="RA34104ST-50">50</A>
Shieh W.-C.
Dell S.
Repiè
O.
Tetrahedron Lett.
2002,
43:
5607
<A NAME="RA34104ST-51">51</A>
Das, S. K.; Roy, J. unpublished results.
<A NAME="RA34104ST-52">52</A>
Jadav JS.
Reddy BVS.
Rao KV.
Raj KS.
Prasad AR.
Kumar SK.
Kunwar AC.
Jayaprakash P.
Jagannath B.
Angew. Chem. Int. Ed.
2003,
42:
5198
<A NAME="RA34104ST-53">53</A>
Bose AK.
Banik BK.
Mathur C.
Wagle DR.
Manhas MS.
Tetrahedron
2000,
56:
5603