References
For recent reviews see:
<A NAME="RG11404ST-1A">1a</A>
Perry MC.
Burgess K.
Tetrahedron: Asymmetry
2003,
14:
951
<A NAME="RG11404ST-1B">1b</A>
Herrmann WA.
Köcher C.
Angew. Chem., Int. Ed. Engl.
1997,
36:
2162 ; Angew. Chem. 1997, 109, 2256
<A NAME="RG11404ST-1C">1c</A>
Herrmann WA.
Angew. Chem. Int. Ed.
2002,
41:
1290 ; Angew. Chem. 2002, 114, 1342
<A NAME="RG11404ST-1D">1d</A>
Arduengo AJ.
Acc. Chem. Res.
1999,
32:
913
<A NAME="RG11404ST-2A">2a</A>
Seiders TJ.
Ward DW.
Grubbs RH.
Org. Lett.
2001,
3:
3225
<A NAME="RG11404ST-2B">2b</A>
Van Veldhuizen JJ.
Garber SB.
Kingsbury JS.
Hoveyda AH.
J. Am. Chem. Soc.
2002,
124:
4954
<A NAME="RG11404ST-2C">2c</A>
Van Veldhuizen JJ.
Gillingham DG.
Garber SB.
Kataoka O.
Hoveyda AH.
J. Am. Chem. Soc.
2003,
125:
12502
High enantioselectivity:
<A NAME="RG11404ST-3A">3a</A>
Perry MC.
Cui X.
Powell MT.
Hou DR.
Reibenspies JH.
Burgess K.
J. Am. Chem. Soc.
2003,
125:
113
<A NAME="RG11404ST-3B">3b</A> Low enantioselectivity:
Bolm C.
Focken T.
Raabe G.
Tetrahedron: Asymmetry
2003,
14:
1733
<A NAME="RG11404ST-4A">4a</A>
Herrmann WA.
Gooßen LJ.
Kocher C.
Artus GRJ.
Angew. Chem., Int. Ed. Engl.
1996,
35:
2805 ; Angew. Chem. 1996, 108, 2580
<A NAME="RG11404ST-4B">4b</A>
Enders D.
Gielen H.
Runsink J.
Breuer K.
Brode S.
Boehn K.
Eur. J. Inorg. Chem.
1998,
913
<A NAME="RG11404ST-4C">4c</A>
Enders D.
Gielen H.
J. Organomet. Chem.
2001,
617:
70
<A NAME="RG11404ST-4D">4d</A>
César V.
Bellemin-Laponnaz S.
Gade LH.
Angew. Chem. Int. Ed.
2004,
43:
1014 ; Angew. Chem. 2004, 116, 1036
<A NAME="RG11404ST-4E">4e</A>
Duan W.-L.
Shi M.
Rong G.-B.
Chem. Commun.
2003,
2916
<A NAME="RG11404ST-5">5</A>
Ma Y.
Song C.
Ma C.
Sun Z.
Chai Q.
Andrus MB.
Angew. Chem. Int. Ed.
2003,
115:
6051 ; Angew. Chem.
2003, 115, 6051
<A NAME="RG11404ST-6">6</A>
Enders D.
Kallfass U.
Angew. Chem. Int. Ed.
2002,
41:
1743 ; Angew. Chem. 2002, 114, 1822
<A NAME="RG11404ST-7A">7a</A>
Seo H.
Park HJ.
Kim BY.
Lee JH.
Son SU.
Chung YK.
Organometallics
2003,
22:
618
<A NAME="RG11404ST-7B">7b</A> A related chiral C,P,C-ligand:
Gishig S.
Togni A.
Organometallics
2004,
23:
2479
<A NAME="RG11404ST-8A">8a</A>
Guillen F.
Winn CL.
Alexakis A.
Tetrahedron: Asymmetry
2001,
12:
2083
<A NAME="RG11404ST-8B">8b</A>
Pytkowicz J.
Roland S.
Mangeney P.
Tetrahedron: Asymmetry
2001,
12:
2087
<A NAME="RG11404ST-8C">8c</A>
Alexakis A.
Winn CL.
Guillen F.
Pytkowicz J.
Roland S.
Mangeney P.
Adv. Synth. Catal.
2003,
3:
345
<A NAME="RG11404ST-9">9</A>
Glorius F.
Altenhoff G.
Goddard R.
Lehmann C.
Chem. Commun.
2002,
22:
2704
<A NAME="RG11404ST-10A">10a</A>
Lang H.
Vittal JJ.
Leung P.-H.
J. Chem. Soc., Dalton Trans.
1998,
2109
<A NAME="RG11404ST-10B">10b</A>
Danopoulos AA.
Winston S.
Gelbrich T.
Hursthouse MB.
Tooze RP.
Chem. Commun.
2002,
482
<A NAME="RG11404ST-10C">10c</A>
Tsoureas N.
Danopoulos AA.
Tulloch AAD.
Light ME.
Organometallics
2003,
22:
4750
<A NAME="RG11404ST-10D">10d</A>
Yang CH.
Lee M.
Nolan SP.
Org. Lett.
2001,
3:
1511
<A NAME="RG11404ST-11A">11a</A>
Danopoulos AA.
Winston S.
Hursthouse MB.
J. Chem. Soc., Dalton Trans.
2002,
3090
<A NAME="RG11404ST-11B">11b</A>
Poyatos M.
Mas-Marzá E.
Mata JA.
Sanau M.
Peris E.
Eur. J. Inorg. Chem.
2003,
1215
<A NAME="RG11404ST-11C">11c</A>
Bolm C.
Kesselgruber M.
Raabe G.
Organometallics
2002,
21:
707
<A NAME="RG11404ST-12">12</A>
Vázquez-Serrano LD.
Owens BT.
Buriak JM.
Chem. Commun.
2002,
2518
<A NAME="RG11404ST-13">13</A>
Kondo K.
Kazuta K.
Fujita H.
Sakamoto Y.
Murakami Y.
Tetrahedron
2002,
58:
5209
<A NAME="RG11404ST-14">14</A>
Hattori T.
Sakamoto J.
Hayashizaka N.
Miyano S.
Synthesis
1994,
199
<A NAME="RG11404ST-15">15</A>
Physical data of (S,S)-4: mp 195-197 °C; [α]D
24 -297 (c 1.13, CHCl3). 1H NMR (300 MHz, CDCl3) for the major isomer of (S,S)-4: δ = 0.93 (d, J = 6.6 Hz, 3 H, CH3), 1.02 (d, J = 6.6 Hz, 3 H, CH3), 3.45 [sept, J = 7.0 Hz, 1 H, CH(CH3)2], (dd, J = 13.6 Hz, J
PH = 5.2 Hz, 1 H, CHN), 6.57 (d, J = 13.6 Hz, 1 H, CHN), 6.92-7.79 (m, 27 H, CHAr), 7.82 (d, J = 8.5 Hz, 1 H, CHNaph), 7.99 (d, J = 7.7 Hz 1 H, CHNaph), 8.11 (br s, 1 H, NCHN), 8.54 (d, J = 8.8 Hz, 1 H, CHNaph). 13C NMR (125.8 MHz, CDCl3) for the major isomer of (S,S)-4: δ = 23.60, 24.96, 27.70, 74.97, 79.00 (d, J = 14.1 Hz), 124.36, 126.18, 126.88, 127.26, 127.54, 128.54, 128.87, 128.94, 129.11,
129.13, 129.24 (d, J = 6.6 Hz), 129.39 (d, J = 7.5 Hz), 129.56, 129.72, 129.77, 129.98, 130.08, 130.15, 130.26, 130.66 (d, J = 4.7 Hz), 130.96, 131.42, 132.23, 132.38 (d, J = 14.1 Hz), 132.68 (d, J = 18.8 Hz), 133.30 (d, J = 19.8 Hz), 133.76 (d, J = 18.8 Hz), 134.05 (d, J = 6.6 Hz), 134.30, 134.73 (d, J = 5.7 Hz), 136.41 (d, J = 25.4 Hz), 144.35, 157.38. 31P NMR (121.5 MHz, CDCl3): δ = -19.52 (s, minor isomer, 13%), -21.80 (s, major isomer, 87%). HRMS (FAB+, direct
insert): m/z calcd for C46H40N2P [M - BF4]+: 651.2929. Found: 651.2936.
<A NAME="RG11404ST-16A">16a</A>
Wang HMJ.
Lin IJB.
Organometallics
1998,
17:
972
<A NAME="RG11404ST-16B">16b</A>
Pytkowicz J.
Roland S.
Mangeney P.
J. Organomet. Chem.
2001,
631:
157
<A NAME="RG11404ST-17">17</A>
Chianese AR.
Li X.
Janzen MC.
Faller JW.
Crabtree RH.
Organometallics
2003,
22:
1663
<A NAME="RG11404ST-18">18</A>
X-ray single crystal structure determination of compound 5: colorless crystal (polyhedron), dimensions 0.12 × 0.17 × 0.2 mm3, crystal system orthorhombic, space group P21212, Z = 2, a = 16.730 (2) Å, b = 22.902 (3) Å, c = 11.2472 (15) Å, V = 4309.3 (10) Å3, ρ = 1.303 g/cm3, T = 200(2) K, θ
max = 23.91 deg, radiation MoKα, λ = 0.71073 Å, 0.3 deg ω-scans with CCD area detector, covering a whole sphere in reciprocal
space, 30565 reflections measured, 6649 unique [R(int) = 0.0893], 5558 observed [I>2σ(I)], intensities were corrected for Lorentz and
polarization effects, an empirical absorption correction was applied using SADABS (program SADABS V2.03 for absorption correction; G. M. Sheldrick, Bruker Analytical
X-ray-Division, Madison, Wisconsin 2001) based on the Laue symmetry of the reciprocal
space, µ = 0.56mm-1, structure solved by direct methods and refined against F
2 with a Full-matrix least-squares algorithm using the SHELXTL-PLUS (5.10) software
package (software package SHELXTL V5.10 for structure solution and refinement, G. M. Sheldrick,
Bruker Analytical X-ray-Division, Madison, Wisconsin 1997), 525 parameters refined,
hydrogen atoms were treated using appropriate riding models, Flack absolute structure
parameter 0.07 (6), goodness of fit 1.21 for observed reflections, final residual
values R1 (F) = 0.077, wR2 (F2) = 0.167 for observed reflections, residual electron density -1.14 to 1.10 eÅ-3. CCDC 236937 contains the supplementary crystallographic data for this structure.
These data can be obtained free of charge via www.ccdc.cam.ac.uk/conts/retrieving.html
[or from the CCDC, 12 Union Road, Cambridge CB2 1EZ, UK; fax: +44 (1223)336033; e-mail:
deposit@ccdc.cam.ac.uk].
<A NAME="RG11404ST-19">19</A>
Beck J.
Reitz M.
Z. Naturforsch
1997,
52b:
604
<A NAME="RG11404ST-20">20</A>
Chojnacki J.
Becker B.
Konitz A.
Potrzebowski MJ.
Woljnowski W.
J. Chem. Soc., Dalton Trans.
1999,
3063
<A NAME="RG11404ST-21">21</A>Physical data of (S,S)-6: mp 209-211 °C; [α]D
24 +10.6 (c 0.30, CHCl3). 1H NMR (300 MHz, CDCl3, signals of major and minor isomer are distinguished by indices a and i, respectively):
δ = 0.52 (d, J = 6.4 Hz, 3 Ha, CH3), 1.15 (d, J = 6.6 Hz, 3 Ha, CH3), 1.11-1.23 (m, COD-CH2), 1.29 (d, J = 6.8 Hz, 3 Hi, CH3), 1.41 (d, J = 6.6 Hz, 3 Hi, CH3), 1.34-1.77 (m, COD-CH2), 2.00-2.34 (m, COD-CH2), 2.37 (br s, 1 Hi, COD-CH2), 2.86 [sept, J = 6.7 Hz, 1 Ha, CH(CH3)2], 3.18 [sept, J = 6.8 Hz, 1 Hi, CH(CH3)2], 3.62-3.78 (m, 1 Ha + 1 Hi, COD-CH), 3.91-4.05 (m, 1 Ha + 1 Hi, COD-CH), 4.59 (d, J = 10.7 Hz, 1 Hi, CHN), 4.96 (d, J = 5.1 Hz, 1 Ha, CHN), 5.36-5.48 (m, 1 Ha + 1 Hi, COD-CH), 5.50-5.60 (m, 1 Hi, COD-CH), 5.79-5.90 (m, 2 Ha + 1 Hi, 2 CHN, COD-CH), 6.16 (d, J = 7.4 Hz, 1 Ha, CHAr), 6.23 (d, J = 7.4 Hz, 1 Hi, CHAr), 6.67 (t, J = 7.8 Hz, 1 Ha, CHAr), 6.84 (t, J = 7.6 Hz, 1 Hi, CHAr), 6.89-7.97 (m, 28 Ha + 28 Hi, CHAr). 13C NMR (125.67 MHz, CDCl3, 253 K, major and minor isomer): δ = 23.58, 23.83, 25.30, 25.32, 25.75, 25.95, 26.04,
28.42, 29.03 (2 C), 34.19, 34.26, 35.77, 36.57, 75.24, 76.70, 78.69, 81.60, 88.31
(dd, J
CP = 15.5 Hz, J
CRh = 6.2 Hz), 88.57 (dd, J
CP = 14.5 Hz, J
CRh = 6.4 Hz), 93.03 (m), 94.39 (dd, J
CP = 10.3 Hz, J
CRh = 4.7 Hz), 100.46 (d, J
CP = 6.0 Hz), 101.05 (d, J
CP = 6.4 Hz), 102.81 (d, J
CP = 5.2 Hz), 104.06 (d, J
CP = 6.0 Hz), 121.31 (d, J
CP = 49.9 Hz), 122.86 (d, J
CP = 49.0 Hz), 122.86, 123.95, 124.64 (m), 125.17, 125.41, 125.77, 126.15, 126.49, 126.54,
126.74 (d, J
CP = 4.3 Hz), 127.10 (d, J
CP = 6.6 Hz), 127.35, 127.43, 127.69, 127.74, 127.86, 128.33-128.63 (several signals
are overlapping in this range), 128.78, 128.88 (d, J
CP = 34.9 Hz), 129.11, 129.27, 129.44, 129.66, 130.16, 130.26, 130.56, 130.63, 130.75
(d, J
CP = 37.2 Hz), 131.38, 131.53, 132.03, 132.53 (d, J
CP = 11.3 Hz), 132.78, 133.52 (d, J
CP = 44.26 Hz), 133.75, 133.91, 134.46, 134.95, 135.53, 137.21, 139.14 (d, J
CP = 2.1 Hz), 142.32 (d, J
CP = 13.2 Hz), 143.70, 144.32 (d, J
CP = 12.3 Hz), 144.78, 207.67 (d, J
RhC = 44.4 Hz, only visible in 13C{31P}), 209.87 (d, J
RhC = 43.5 Hz, only visible in 13C{31P}). 31P NMR (202.47 MHz, CDCl3, 253 K): δ = 17.89 (d, J
RhP = 168.1 Hz, major isomer, 66%), 19.90 (d, J
RhP = 162.0 Hz, minor isomer, 33%). HRMS (FAB+, direct insert): m/z calcd for C54H51N2PRh [M - BF4]+: 861.2844. Found: 861.2820.
<A NAME="RG11404ST-21">21</A>
<A NAME="RG11404ST-22">22</A>
With PhCF3, n-hexane, MeOH, and THF enantioselectivities were lower.
<A NAME="RG11404ST-23">23</A>
Representative Procedure for Catalytic Hydrogenation: Preparation of (R)-8: An autoclave was charged with dimethyl itaconate (158 mg, 1.00 mmol), (S,S)-6 (0.9 mg, 1.0 µmol) and CH2Cl2 (15 mL). The autoclave was then sealed and pressurized to 30 bar of H2. The reaction mixture was stirred for 20 h at r.t. The solution was passed over a
short plug of silica gel with CH2Cl2 as eluent. After evaporation of the solvent, 2-methyl-succinic acid dimethyl ester
was obtained in quantitative yield. The ee value was determined to be 98.2% ee by
GC on a chiral phase (analytical data cf. Table
[1]
).
<A NAME="RG11404ST-24A">24a</A>
The rhodium complex (S,S)-6 was also tested in the catalytic asymmetric addition of phenylboronic acid to enones.
Using 3 mol% of the complex (S,S)-6 enantioselectivities up to 94% could be achieved
<A NAME="RG11404ST-24B">24b</A>
J.-M. Becht and E. Bappert, unpublished results.
<A NAME="RG11404ST-25">25</A>
Ostermeier M.
Brunner B.
Korff C.
Helmchen G.
Eur. J. Org. Chem.
2003,
17:
3453