Zusammenfassung
In dieser Übersichtsarbeit stellen wir die in den letzten Jahren erzielten Fortschritte
bei der Erforschung der Multiplen Sklerose dar und diskutieren sie kritisch. Aus klinischen,
bildgebenden, pathologischen, immunologischen und tierexperimentellen Studien resultierten
neue Erkenntnisse zur Pathogenese und Therapie der MS. Schwerpunkte liegen insbesondere
auf neurodegenerativen Aspekten der Erkrankung sowie auf therapierelevanten Befunden,
die bereits zu einer deutlichen Verbesserung der Immuntherapie im letzten Jahrzehnt
führten. Vor allem bei der schubförmig verlaufenden MS kann seit der Einführung der
Immunmodulation mit Interferonen und Glatiramerazetat in vielen Fällen die Krankheit
durch adäquate und frühe Behandlung langfristig stabilisiert werden. In naher Zukunft
sind neue Immuntherapeutika, aber wahrscheinlich auch individualisierte Behandlungsansätze
zu erwarten. Die weitere Entwicklung neurobiologisch-protektiver Strategien soll gezielt
das Überleben von Glia- und Nervenzellen fördern.
Abstract
In this article, recent advances in the research on pathogenesis and therapy of multiple
sclerosis (MS) will be summarized. New evidence from clinical studies, imaging, histopathology
and experimental models are discussed with a focus on neurodegenerative aspects and
evidence from recent therapeutic studies. During the last decade, important advances
in immunotherapy have been achieved, which proved especially useful for patients with
relapsing remitting MS. The introduction of interferons and glatiramer acetate into
MS therapy often leads to a stabilization of the disease course if administered adequately
and early. The pathogenetic insights presented here may open new avenues for innovative
immunodulatory approaches and lead to an individualized MS therapy in the future.
Neuroprotective treatment strategies aim at the protection of glial and neuronal cells.
Literatur
1
Ozawa K, Suchanek G, Breitschopf H, Brück W, Budka H, Jellinger K, Lassmann H.
Patterns of oligodendroglia pathology in multiple sclerosis.
Brain.
1994;
117
1311-1322
2
Lucchinetti C, Brück W, Parisi J, Scheithauer B, Rodriguez M, Lassmann H.
A quantitative analysis of oligodendrocytes in multiple sclerosis lesions. A study
of 113 cases.
Brain.
1999;
122
2279-2295
3
Lucchinetti C F, Brück W, Rodriguez M, Lassmann H.
Distinct patterns of Multiple Sclerosis pathology indicates heterogeneity in pathogenesis.
Brain Pathol.
1996;
6
259-274
4
Lassmann H, Brück W, Lucchinetti C.
Heterogeneity of multiple sclerosis pathogenesis: implications for diagnosis and therapy.
Trends Mol Med.
2001;
7
115-121
5
Aboul-Enein F, Rauschka H, Kornek B, Stadelmann C, Stefferl A, Bruck W, Lucchinetti C,
Schmidbauer M, Jellinger K, Lassmann H.
Preferential loss of myelin-associated glycoprotein reflects hypoxia-like white matter
damage in stroke and inflammatory brain diseases.
J Neuropathol Exp Neurol.
2003;
62 (1)
25-33
6
Weinshenker B G, O'Brien P C, Petterson T M, Noseworthy J H, Lucchinetti C F, Dodick D W,
Pineda A A, Stevens L N, Rodriguez M.
A randomized trial of plasma exchange in acute central nervous system inflammatory
demyelinating disease.
Ann Neurol.
1999;
46
878-886
7
Yao D-L, Webster H D, Hudson L D, Brenner M, Liu D-S, Escobar A I, Komoly S.
Concentric sclerosis (Balo): Morphometric and in situ hybridization study of lesions
in six patients.
Ann Neurol.
1994;
35
18-30
8
Lucchinetti C F, Mandler R N, McGavern D, Brück W, Gleich G, Ransohoff R M, Trebst C,
Weinshenker B, Wingerchuk D, Parisi J E, Lassmann H.
A role for humoral mechanisms in the pathogenesis of Devic's neuromyelitis optica.
Brain.
2002;
125
1450-1461
9
Bitsch A, Schuchardt J, Bunkowski S, Kuhlmann T, Brück W.
Acute axonal injury in multiple sclerosis. Correlation with demyelination and inflammation.
Brain.
2000;
123
1174-1183
10
Kuhlmann T, Lingfeld G, Bitsch A, Schuchardt J, Brück W.
Acute axonal damage in multiple sclerosis is most extensive in early disease stages
and decreases over time.
Brain.
2002;
125
2202-2212
11
Trapp B D, Peterson J, Ransohoff R M, Rudick R, Mork S, Bo L.
Axonal transection in the lesions of multiple sclerosis.
New Engl J Med.
1998;
338
278-285
12
Davie C A, Barker G J, Webb S, Tofts P S, Thompson A J, Harding A E, McDonald W I,
Miller D H.
Persistent functional deficit in multiple sclerosis and autosomal dominant cerebellar
ataxia is associated with axon loss.
Brain.
1995;
118
1583-1592
13
Losseff N A, Webb S L, O'Riordan J I, Page R, Wang L, Barker G J, Tofts P S, McDonald W I,
Miller D H, Thompson A J.
Spinal cord atrophy and disability in multiple sclerosis. A new reproducible and sensitive
MRI method with potential to monitor disease progression.
Brain.
1996;
119
701-708
14
Peterson J W, Bö L, Mörk S, Chang A, Trapp B D.
Transected neurites, apoptotic neurons, and reduced inflammation in cortical multiple
sclerosis lesions.
Ann Neurol.
2001;
50
389-400
15
Bo L, Vedeler C A, Nyland H I, Trapp B D, Mork S J.
Subpial demyelination in the cerebral cortex of multiple sclerosis patients.
J Neuropathol Exp Neurol.
2003;
62 (7)
723-732
16
Bo L, Vedeler C A, Nyland H, Trapp B D, Mork S J.
Intracortical multiple sclerosis lesions are not associated with increased lymphocyte
infiltration.
Mult Scler.
2003;
9 (4)
323-331
17
Bruck W, Kuhlmann T, Stadelmann C.
Remyelination in multiple sclerosis.
J Neurol Sci.
2003;
206 (2)
181-185
18
Bitsch A, Kuhlmann T, Stadelmann C, Lassmann H, Lucchinetti C, Brück W.
A longitudinal MRI study of histopathologically defined hypointense multiple sclerosis
lesions.
Ann Neurol.
2001;
49
793-796
19
Reddy H, Narayanan S, Woolrich M, Mitsumori T, Lapierre Y, Arnold D L, Matthews P M.
Functional brain reorganization for hand movement in patients with multiple sclerosis:
defining distinct effects of injury and disability.
Brain.
2002;
125 (Pt 12)
2646-2657
20
Kerschensteiner M, Gallmeier E, Behrens L, Leal V V, Misgeld T, Klinkert W EF, Kolbeck R,
Hoppe E, Oropeza-Wekerle R-L, Bartke I, Stadelmann C, Lassmann H, Wekerle H, Hohlfeld R.
Activated human T cells, B cells, and monocytes produce brain-derived neurotrophic
factor in vitro and in inflammatory brain lesions: a neuroprotective role of inflammation?.
J Exp Med.
1999;
189
865-870
21
Stadelmann C, Kerschensteiner M, Misgeld T, Brück W, Hohlfeld R, Lassmann H.
BDNF and gp145trkB in multiple sclerosis brain lesions: neuroprotective interactions
between immune and neuronal cells?.
Brain.
2002;
125
75-85
22
Steinman L.
Multiple sclerosis: a two-stage disease.
Nat Immunol.
2001;
2 (9)
762-764
23
Ota K, Matsui M, Milford E L, Mackin G A, Weiner H L, Hafler D A.
T-cell recognition of an immunodominant myelin basic protein epitope in multiple sclerosis.
Nature.
1990;
346 (6280)
183-187
24
Pette M, Fujita K, Wilkinson D, Altmann D M, Trowsdale J, Giegerich G, Hinkkanen A,
Epplen J T, Kappos L, Wekerle H.
Myelin autoreactivity in multiple sclerosis: recognition of myelin basic protein in
the context of HLA-DR2 products by T lymphocytes of multiple-sclerosis patients and
healthy donors.
Proc Natl Acad Sci USA.
1990;
87 (20)
7968-7972
25
Goebels N, Hofstetter H, Schmidt S, Brunner C, Wekerle H, Hohlfeld R.
Repertoire dynamics of autoreactive T cells in multiple sclerosis patients and healthy
subjects: epitope spreading versus clonal persistence.
Brain.
2000;
123 Pt 3Ž
508-518
26
Tuohy V K, Yu M, Weinstock-Guttman B, Kinkel R P.
Diversity and plasticity of self recognition during the development of multiple sclerosis.
J Clin Invest.
1997;
99 (7)
1682-1690
27
Sabatos C A, Chakravarti S, Cha E, Schubart A, Sanchez-Fueyo A, Zheng X X, Coyle A J,
Strom T B, Freeman G J, Kuchroo V K.
Interaction of Tim-3 and Tim-3 ligand regulates T helper type 1 responses and induction
of peripheral tolerance.
Nat Immunol.
2003;
4 (11)
1102-1110
28
Khademi M, Illes Z, Gielen A W, Marta M, Takazawa N, Baecher-Allan C, Brundin L, Hannerz J,
Martin C, Harris R A, Hafler D A, Kuchroo V K, Olsson T, Piehl F, Wallstrom E.
T Cell Ig- and mucin-domain-containing molecule-3 (TIM-3) and TIM-1 molecules are
differentially expressed on human Th1 and Th2 cells and in cerebrospinal fluid-derived
mononuclear cells in multiple sclerosis.
J Immunol.
2004;
172 (11)
7169-7176
29
Shevach E M.
Regulatory T cells. Introduction.
Semin Immunol.
2004;
16 (2)
69-71
30
Viglietta V, Baecher-Allan C, Weiner H L, Hafler D A.
Loss of functional suppression by CD4+CD25+ regulatory T cells in patients with multiple
sclerosis.
J Exp Med.
2004;
199 (7)
971-979
31
Takahashi K, Miyake S, Kondo T, Terao K, Hatakenaka M, Hashimoto S, Yamamura T.
Natural killer type 2 bias in remission of multiple sclerosis.
J Clin Invest.
2001;
107 (5)
R23-R29
32 Bayas A, Stazoilek M, Kruse N. et al .Altered regulatory function of plasmacytoid
dendritic cells in MS. J Neurol 2004 251 Suppl. 3 III/43
33
Kivisakk P, Mahad D J, Callahan M K, Sikora K, Trebst C, Tucky B, Wujek J, Ravid R,
Staugaitis S M, Lassmann H, Ransohoff R M.
Expression of CCR7 in multiple sclerosis: implications for CNS immunity.
Ann Neurol.
2004;
55 (5)
627-638
34
Babbe H, Roers A, Waisman A, Lassmann H, Goebels N, Hohlfeld R, Friese M, Schroder R,
Deckert M, Schmidt S, Ravid R, Rajewsky K.
Clonal expansions of CD8(+) T cells dominate the T cell infiltrate in active multiple
sclerosis lesions as shown by micromanipulation and single cell polymerase chain reaction.
J Exp Med.
2000;
192 (3)
393-404
35
Skulina C, Schmidt S, Dornmair K, Babbe H, Roers A, Rajewsky K, Wekerle H, Hohlfeld R,
Goebels N.
Multiple sclerosis: brain-infiltrating CD8+ T cells persist as clonal expansions in
the cerebrospinal fluid and blood.
Proc Natl Acad Sci USA.
2004;
101 (8)
2428-2433
36
Tejada-Simon M V, Zang Y C, Hong J, Rivera V M, Zhang J Z.
Cross-reactivity with myelin basic protein and human herpesvirus-6 in multiple sclerosis.
Ann Neurol.
2003;
53 (2)
189-197
37
Derfuss T, Gurkov R, Then B F, Goebels N, Hartmann M, Barz C, Wilske B, Autenrieth I,
Wick M, Hohlfeld R, Meinl E.
Intrathecal antibody production against Chlamydia pneumoniae in multiple sclerosis
is part of a polyspecific immune response.
Brain.
2001;
124 (Pt 7)
1325-1335
38
Akira S, Takeda K, Kaisho T.
Toll-like receptors: critical proteins linking innate and acquired immunity.
Nat Immunol.
2001;
2 (8)
675-680
39
Wekerle H, Kojima K, Lannes-Vieira J, Lassmann H, Linington C.
Animal models.
Ann Neurol.
1994;
36
47-53
40
Rivers T M, Sprunt D H, Berry G P.
Observations on attempts to produce acute disseminated encephalomyelitis in monkeys.
J Exp Med.
1933;
58
39-53
41 Cornet A, Liblau R. Experimentelle Autoimmunenzephalomyelitis. 2003: 80-100
42
Ben-Nun A, Wekerle H, Cohen I R.
The rapid isolation of clonable antigen-specific T lymphocyte lines capable of mediating
autoimmune encephalomyelitis.
Eur J Immunol.
1981;
11
195-199
43
Sundvall M, Jirholt J, Yang H T, Jansson L, Engstrom A, Pettersson U, Holmdahl R.
Identification of murine loci associated with susceptibility to chronic experimental
autoimmune encephalomyelitis.
Nat Genet.
1995;
10 (3)
313-317
44
Kuchroo V K, Umetsu D T, DeKruyff R H, Freeman G J.
The TIM gene family: emerging roles in immunity and disease.
Nat Rev Immunol.
2003;
3 (6)
454-462
45
Storch M K, Stefferl A, Brehm U, Weissert R, Wallström E, Kerschensteiner M, Olsson T,
Linington C, Lassmann H.
Autoimmunity to myelin oligodendrocyte glycoprotein in rats mimics the spectrum of
multiple sclerosis pathology.
Brain Pathol.
1998;
8
681-694
46
Flügel A, Berkowicz T, Ritter T, Labeur M, Jenne D E, Li Z, Ellwart J W, Willem M,
Lassmann H, Wekerle H.
Migratory activity and functional changes of green fluorescent effector cells before
and during experimental autoimmune encephalomyelitis.
Immunity.
2001;
14
547-560
47
t'Hart B A, van Meurs M, Brok H P, Massacesi L, Bauer J, Boon L, Bontrop R E, Laman J D.
A new primate model for multiple sclerosis in the common marmoset.
Immunol Today.
2000;
21 (6)
290-297
48
t'Hart B A, Vervoordeldonk M, Heeney J L, Tak P P.
Gene therapy in nonhuman primate models of human autoimmune disease.
Gene Ther.
2003;
10 (10)
890-901
49
Koh D R, Fung-Leung W P, Ho A, Gray D, Acha-Orbea H, Mak T W.
Less mortality but more relapses in experimental allergic encephalomyelitis in CD8-/-mice.
Science.
1992;
256 (5060)
1210-1213
50
Meyer R, Weissert R, Diem R, Storch M K, de Graaf K L, Kramer B, Bähr M.
Acute neuronal apoptosis in a rat model of multiple sclerosis.
J Neurosci.
2001;
21
6214-6220
51
Nitsch R, Pohl E E, Smorodchenko A, Infante-Duarte C, Aktas O, Zipp F.
Direct impact of T cells on neurons revealed by two-photon microscopy in living brain
tissue.
J Neurosci.
2004;
24 (10)
2458-2464
52
Kornek B, Storch M K, Bauer J, Djamshidian A, Weissert R, Wallstroem E, Stefferl A,
Zimprich F, Olsson T, Linington C, Schmidbauer M, Lassmann H.
Distribution of a calcium channel subunit in dystrophic axons in multiple sclerosis
and experimental autoimmune encephalomyelitis.
Brain.
2001;
124
1114-1124
53
Craner M J, Kataoka Y, Lo A C, Black J A, Baker D, Waxman S G.
Temporal course of upregulation of Na(v)1.8 in Purkinje neurons parallels the progression
of clinical deficit in experimental allergic encephalomyelitis.
J Neuropathol Exp Neurol.
2003;
62 (9)
968-975
54
Craner M J, Lo A C, Black J A, Waxman S G.
Abnormal sodium channel distribution in optic nerve axons in a model of inflammatory
demyelination.
Brain.
2003;
126 (Pt 7)
1552-1561
55
Linker R A, Mäurer M, Gaupp S, Martini R, Holtmann B, Giess R, Rieckmann P, Lassmann H,
Toyka K V, Sendtner M, Gold R.
CNTF is a major protective factor in demyelinating CNS disease: a neurotrophic cytokine
as modulator in neuroinflammation.
Nature Med.
2002;
8
620-624
56 Sättler M, Merkler D, Maier K, Stadelmann C, Ehrenreich H, Bähr M, Diem R. Neuroprotective
effects and intracellular signaling pathways of erythropoietin in a rat model of multiple
sclerosis. Cell Death Differ 2004; Im Druck
57
Bechtold D A, Kapoor R, Smith K J.
Axonal protection using flecainide in experimental autoimmune encephalomyelitis.
Ann Neurol.
2004;
55 (5)
607-616
58
MS-Therapie Konsensusgruppe .
Immunmodulatorische Stufentherapie der Multiplen Sklerose.
Nervenarzt.
1999;
70
371-386
59
Grauer O, Offenhausser M, Schmidt J, Toyka K V, Gold R.
Glucocorticosteroid therapy in optic neuritis and multiple sclerosis. Evidence from
clinical studies and practical recommendations.
Nervenarzt.
2001;
72 (8)
577-589
60
Krauss S, Brand M D, Buttgereit F.
Signaling takes a breath - new quantitative perspectives on bioenergetics and signal
transduction.
Immunity.
2001;
15 (4)
497-502
61
Gold R, Buttgereit F, Toyka K V.
Mechanism of action of glucocorticosteroid hormones: possible implications for therapy
of neuroimmunological disorders.
J Neuroimmunol.
2001;
117 (1 - 2)
1-8
62
Schmidt J, Metselaar J M, Wauben M H, Toyka K V, Storm G, Gold R.
Drug targeting by long-circulating liposomal glucocorticosteroids increases therapeutic
efficacy in a model of multiple sclerosis.
Brain.
2003;
126 (Pt 8)
1895-1904
63
Morrow S A, Stoian C A, Dmitrovic J, Chan S C, Metz L M.
The bioavailability of IV methylprednisolone and oral prednisone in multiple sclerosis.
Neurology.
2004;
63 (6)
1079-1080
64
Keegan M, Pineda A A, McClelland R L, Darby C H, Rodriguez M, Weinshenker B G.
Plasma exchange for severe attacks of CNS demyelination: predictors of response.
Neurology.
2002;
58
143-146
65
Ruprecht K, Klinker E, Dintelmann T, Rieckmann P, Gold R.
Plasma exchange for severe optic neuritis: treatment of 10 patients.
Neurology.
2004;
63 (6)
1081-1083
66
Hartung H P, Kieseier B C.
Targets for the therapeutic action of interferon-beta in multiple sclerosis.
Ann Neurol.
1996;
40 (6)
825-826
67
Bayas A, Rieckmann P.
Managing the adverse effects of interferon-beta therapy in multiple sclerosis.
Drug Saf.
2000;
22 (2)
149-159
68
Filippini G, Munari L, Incorvaia B, Ebers G C, Polman C, D'Amico R, Rice G P.
Interferons in relapsing remitting multiple sclerosis: a systematic review.
Lancet.
2003;
361 (9357)
545-552
69
Brex P A, Ciccarelli O, O'Riordan J I, Sailer M, Thompson A J, Miller D H.
A longitudinal study of abnormalities on MRI and disability from multiple sclerosis.
New Engl J Med.
2002;
346
158-164
70
McDonald W I, Compston A, Edan G, Goodkin D, Hartung H P, Lublin F D, McFarland H F,
Paty D W, Polman C H, Reingold S C, Sandberg-Wollheim M, Sibley W, Thompson A, van
den Noort S, Weinshenker B Y, Wolinsky J S.
Recommended diagnostic criteria for multiple sclerosis: guidelines from the International
Panel on the diagnosis of multiple sclerosis.
Ann Neurol.
2001;
50 (1)
121-127
71
Beck R W, Chandler D L, Cole S R, Simon J H, Jacobs L D, Kinkel R P, Selhorst J B,
Rose J W, Cooper J A, Rice G, Murray T J, Sandrock A W.
Interferon beta-1a for early multiple sclerosis: CHAMPS trial subgroup analyses.
Ann Neurol.
2002;
51 (4)
481-490
72
PRISMS-4 .
Long-term efficacy of interferon-beta-1a in relapsing MS.
Neurology.
2001;
56 (12)
1628-1636
73
Durelli L, Verdun E, Barbero P, Bergui M, Versino E, Ghezzi A, Montanari E, Zaffaroni M.
Every-other-day interferon beta-1b versus once-weekly interferon beta-1a for multiple
sclerosis: results of a 2-year prospective randomised multicentre study (INCOMIN).
Lancet.
2002;
359 (9316)
1453-1460
74
Panitch H, Goodin D S, Francis G, Chang P, Coyle P K, O'Connor P, Monaghan E, Li D,
Weinshenker B.
Randomized, comparative study of interferon beta-1a treatment regimens in MS: The
EVIDENCE Trial.
Neurology.
2002;
59 (10)
1496-1506
75
Sorensen P S, Ross C, Clemmesen K M, Bendtzen K, Frederiksen J L, Jensen K, Kristensen O,
Petersen T, Rasmussen S, Ravnborg M, Stenager E, Koch-Henriksen N.
Clinical importance of neutralising antibodies against interferon beta in patients
with relapsing-remitting multiple sclerosis.
Lancet.
2003;
362 (9391)
1184-1191
76
Gold R, Heidenreich F, Kappos L.
Immunotherapy of multiple sclerosis with glatiramer acetate mechanisms of action and
results from therapeutic trials.
Akt Neurol.
2001;
29
345-351
77
Weber M S, Starck M, Wagenpfeil S, Meinl E, Hohlfeld R, Farina C.
Multiple sclerosis: glatiramer acetate inhibits monocyte reactivity in vitro and in
vivo.
Brain.
2004;
127 (Pt 6)
1370-1378
78
Ziemssen T, Kumpfel T, Klinkert W E, Neuhaus O, Hohlfeld R.
Glatiramer acetate-specific T-helper 1- and 2-type cell lines produce BDNF: implications
for multiple sclerosis therapy.
Brain.
2002;
125
2381-2391
79
Filippi M, Rovaris M, Rocca M A, Sormani M P, Wolinsky J S, Comi G.
Glatiramer acetate reduces the proportion of new MS lesions evolving into „black holes”.
Neurology.
2001;
57
731-733
80
Comi G, Filippi M, Wolinsky J S.
European/Canadian multicenter, double-blind, randomized, placebo-controlled study
of the effects of glatiramer acetate on magnetic resonance imaging-measured disease
activity and burden in patients with relapsing multiple sclerosis. European/Canadian
Glatiramer Acetate Study Group.
Ann Neurol.
2001;
49 (3)
290-297
81
Spina C A.
Azathioprine as an immune modulating drug: clinical applications.
Clin Imm All.
1984;
4
415-446
82
Tiede I, Fritz G, Strand S, Poppe D, Dvorsky R, Strand D, Lehr H A, Wirtz S, Becker C,
Atreya R, Mudter J, Hildner K, Bartsch B, Holtmann M, Blumberg R, Walczak H, Iven H,
Galle P R, Ahmadian M R, Neurath M F.
CD28-dependent Rac1 activation is the molecular target of azathioprine in primary
human CD4+ T lymphocytes.
J Clin Invest.
2003;
111 (8)
1133-1145
83
Kappos L, Patzold U, Dommasch D, Poser S, Haas J, Krauseneck P, Malin J P, Fierz W,
Graffenried B U, Gugerli U S.
Cyclosporine versus azathioprine in the long-term treatment of multiple sclerosis-results
of the German multicenter study.
Ann Neurol.
1988;
23 (1)
56-63
84
Yudkin P L, Ellison G W, Ghezzi A, Goodkin D E, Hughes R A, McPherson K, Mertin J,
Milanese C.
Overview of azathioprine treatment in multiple sclerosis.
Lancet.
1991;
338 (8774)
1051-1055
85
Stangel M, Gold R.
Use of IV immunoglobulins in neurology. Evidence-based consensus.
Nervenarzt.
2004;
75 (8)
801-816
86
Lewanska M, Siger-Zajdel M, Selmaj K.
No difference in efficacy of two different doses of intravenous immunoglobulins in
MS: clinical and MRI assessment.
Eur J Neurol.
2002;
9 (6)
565-572
87 Gonsette R, Demonty L. Mitoxantrone: a new immunosuppressive agent in multiple
sclerosis. 1989: 161-164
88
Weilbach F X, Chan A, Toyka K V, Gold R.
The cardioprotector dexrazoxane augments therapeutic efficacy of mitoxantrone in experimental
autoimmune encephalomyelitis.
Clin Exp Immunol.
2004;
135 (1)
49-55
89
Hartung H P, Gonsette R, Konig N, Kwiecinski H, Guseo A, Morrissey S P, Krapf H, Zwingers T.
Mitoxantrone in progressive multiple sclerosis: a placebo-controlled, double-blind,
randomised, multicentre trial.
Lancet.
2002;
360 (9350)
2018-2025
90
Strotmann J M, Spindler M, Weilbach F X, Gold R, Ertl G, Voelker W.
Myocardial function in patients with multiple sclerosis treated with low-dose mitoxantrone.
Am J Cardiol.
2002;
89 (10)
1222-1225
91
Ghalie R G, Mauch E, Edan G, Hartung H P, Gonsette R E, Eisenmann S, Le Page E, Butine M D,
De Goodkin D E.
A study of therapy-related acute leukaemia after mitoxantrone therapy for multiple
sclerosis.
Mult Scler.
2002;
8 (5)
441-445
92
Smith D R, Balashov K E, Hafler D A, Khoury S J, Weiner H L.
Immune deviation following pulse cyclophosphamide/methylprednisolone treatment of
multiple sclerosis: increased interleukin-4 production and associated eosinophilia.
Ann Neurol.
1997;
42
313-318
93
Pette M, Hartung H P, Toyka K V.
Cyclophosphamide in therapy of chronic progressive multiple sclerosis. Critical analysis
of current studies.
Nervenarzt.
1994;
65 (4)
271-274
94
Miller D H, Khan O A, Sheremata W A, Blumhardt L D, Rice G P, Libonati M A, Willmer-Hulme A J,
Dalton C M, Miszkiel K A, O'Connor P W.
A controlled trial of natalizumab for relapsing multiple sclerosis.
N Engl J Med.
2003;
348 (1)
15-23
95
Leussink V I, Zettl U K, Jander S, Pepinsky R B, Lobb R R, Stoll G, Toyka K V, Gold R.
Blockade of signaling via the very late antigen (VLA-4) and its counterligand vascular
cell adhesion molecule-1 (VCAM-1) causes increased T cell apoptosis in experimental
autoimmune neuritis.
Acta Neuropathol (Berl).
2002;
103 (2)
131-136
96
Tubridy N, Behan P O, Capildeo R, Chaudhuri A, Forbes R, Hawkins C P, Hughes R A,
Palace J, Sharrack B, Swingler R, Young C, Moseley I F, MacManus D G, Donoghue S,
Miller D H.
The effect of anti-alpha4 integrin antibody on brain lesion activity in MS. The UK
Antegren Study Group.
Neurology.
1999;
53 (3)
466-472
97
Bielekova B, Richert N, Howard T, Blevins G, Markovic-Plese S, McCartin J, Wurfel J,
Ohayon J, Waldmann T A, McFarland H F, Martin R.
Humanized anti-CD25 (daclizumab) inhibits disease activity in multiple sclerosis patients
failing to respond to interferon beta.
Proc Natl Acad Sci USA.
2004;
101 (23)
8705-8708
98
Horuk R, Shurey S, Ng H P, May K, Bauman J G, Islam I, Ghannam A, Buckman B, Wei G P,
Xu W, Liang M, Rosser M, Dunning L, Hesselgesser J, Snider R M, Morrissey M M, Perez H D,
Green C.
CCR1-specific non-peptide antagonist: efficacy in a rabbit allograft rejection model.
Immunol Lett.
2001;
76 (3)
193-201
99
Elices M J.
BX-471 Berlex.
Curr Opin Investig Drugs.
2002;
3 (6)
865-869
100
Litjens N H, Rademaker M, Ravensbergen B, Rea D, van der Plas M J, Thio B, Walding A,
Van Dissel J T, Nibbering P H.
Monomethylfumarate affects polarization of monocyte-derived dendritic cells resulting
in down-regulated Th1 lymphocyte responses.
Eur J Immunol.
2004;
34 (2)
565-575
101
Neuhaus O, Stuve O, Zamvil S S, Hartung H P.
Are statins a treatment option for multiple sclerosis?.
Lancet Neurol.
2004;
3 (6)
369-371
102
Vollmer T, Key L, Durkalski V, Tyor W, Corboy J, Markovic-Plese S, Preiningerova J,
Rizzo M, Singh I.
Oral simvastatin treatment in relapsing-remitting multiple sclerosis.
Lancet.
2004;
363 (9421)
1607-1608
103
Wiendl H, Hohlfeld R.
Therapeutic approaches in multiple sclerosis: lessons from failed and interrupted
treatment trials.
BioDrugs.
2002;
16 (3)
183-200
104
Heinze T. et al .
Symptomatische Therapie der Multiplen Sklerose.
Nervenarzt.
2004;
75 (Suppl. 1)
2-39
105 Gold R, Toyka K V. Immuntherapie neurologischer Erkrankungen. Bremen: Uni-Med
2001:
Prof. Dr. med. Ralf Gold
Institut für Multiple Sklerose Forschung · Bereich Humanmedizin der Georg-August-Universität
und Gemeinnützige Hertie-Stiftung
Waldweg 33
37073 Göttingen
Email: r.gold@med.uni-goettingen.de