Plant Biol (Stuttg) 2005; 7(1): 91-97
DOI: 10.1055/s-2004-830446
Short Research Paper

Georg Thieme Verlag Stuttgart KG · New York

Transport of Isoprenoid Intermediates Across Chloroplast Envelope Membranes

U.-I. Flügge1 , W. Gao2
  • 1Lehrstuhl Botanik II, Universität zu Köln, Gyrhofstraße 15, 50931 Köln, Germany
  • 2Biozentrum Universität Halle, Weinbergweg 22, 06120 Halle/Saale, Germany
Further Information

Publication History

Received: July 27, 2004

Accepted: September 23, 2004

Publication Date:
16 December 2004 (online)

Abstract

The common precursor for isoprenoid biosynthesis in plants, isopentenyl diphosphate (IPP), is synthesized by two pathways, the cytosolic mevalonate pathway and the plastidic 1-deoxy-D-xylulose 5-phosphate/methylerythritol phosphate (DOXP/MEP) pathway. The DOXP/MEP pathway leads to the formation of various phosphorylated intermediates, including DOXP, 4-hydroxy-3-methylbutenyl diphosphate (HMBPP), and finally IPP. There is ample evidence for metabolic cross-talk between the two biosynthetic pathways. The present study addresses the question whether isoprenoid intermediates could be exchanged between both compartments by members of the plastidic phosphate translocator (PT) family that all mediate a counter-exchange between inorganic phosphate and various phosphorylated compounds. Transport experiments using intact chloroplasts, liposomes containing reconstituted envelope membrane proteins or recombinant PT proteins showed that HMBPP is not exchanged between the cytosol and the chloroplasts and that the transport of DOXP is preferentially mediated by the recently discovered plastidic transporter for pentose phosphates, the xylulose 5-phosphate translocator. Evidence is presented that transport of IPP does not proceed via the plastidic PTs although IPP transport is strictly dependent on various phosphorylated compounds on the opposite side of the membrane. These phosphorylated trans compounds are, in part, also used as counter-substrates by the plastidic PTs but appear to only trans activate IPP transport without being transported.

References

  • 1 Arigoni D., Sagner S., Latzel C., Eisenreich W., Bacher A., Zenk M. H.. Terpenoid biosynthesis from 1-deoxy-D-xylulose in higher plants by intramolecular skeletal rearrangement.  Proceedings of the National Academy of Sciences of the USA. (1997);  94 10600-10605
  • 2 Bick J. A., Lange B. M.. Metabolic cross talk between cytosolic and plastidial pathways of isoprenoid biosynthesis: unidirectional transport of intermediates across the chloroplast envelope membrane.  Archives of Biochemistry and Biophysics. (2003);  415 146-154
  • 3 Davisson V. J., Woodside A. B., Poulter C. D.. Synthesis of allylic and homoallylic isoprenoid pyrophosphates.  Methods in Enzymology. (1985);  110 130-144
  • 4 Douce R., Holtz R. B., Benson A. A.. Isolation and properties of the envelope of spinach chloroplasts.  Journal of Biological Chemistry. (1973);  248 7215-7222
  • 5 Eicks M., Maurino V., Knappe S., Flügge U. I., Fischer K.. The plastidic pentose phosphate translocator represents an important link between the cytosolic and the plastidic pentose phosphate pathways in plants.  Plant Physiology. (2002);  128 512-522
  • 6 Estévez J. M., Cantero A., Romero C., Kawaide H., Jiménez . L. F., Kuzuyama T., Seto H., Kamiya Y., León P.. Analysis of the expression of CLA1, a gene that encodes the 1-deoxyxylulose 5-phosphate synthase of the 2-C-methyl-D-erythritol-4-phosphate pathway in Arabidopsis. .  Plant Physiology. (2000);  124 95-104
  • 7 Fliege R., Flügge U. I., Werdan K., Heldt H. W.. Specific transport of inorganic phosphate, 3-phosphoglycerate and triose phosphates across the inner membrane of the envelope in spinach chloroplasts.  Biochimica et Biophysica Acta. (1978);  502 232-247
  • 8 Flügge U. I.. Reaction mechanism and asymmetric orientation of the reconstituted chloroplast phosphate translocator.  Biochimica et Biophysica Acta. (1992);  1110 112-118
  • 25 Flügge U. I., Häusler R. E., Ludewig F., Fischer K.. Functional genomics of phosphate antiport systems of plastids.  Physiologia Plantarum. (2003);  118 475-482
  • 9 Gao W., Loeser R., Raschke M., Dessoy M. A., Fulhorst M., Alpermann H., Wessjohann L. A., Zenk M. H.. (E)-4-hydroxy-3-methylbut-2-enyl diphosphate: An intermediate in the formation of terpenoids in plant chromoplasts.  Angewandte Chemie, International Edition. (2002);  41 2604-2607
  • 10 Gao W., Raschke M., Alpermann H., Zenk M. H.. A facile enzymatic synthesis of isotopically labelled 2-methyl-D-erythritol 2,4-cyclodiphosphate by spinach chloroplast stroma.  Helvetica Chimica Acta. (2003);  86 3568-3577
  • 11 de Gutiérrez-Nava M. L., Gillmor C. S., Jiménez L. F., Guevara-García A., León P.. Chloroplast biogenesis genes act cell and noncell autonomously in early chloroplast development.  Plant Physiology. (2004);  135 471-482
  • 12 Heldt H. W., Sauer F.. The inner membrane of the chloroplast envelope as the site of specific metabolite transport.  Biochimica et Biophysica Acta. (1971);  234 83-91
  • 13 Heldt H. W.. Measurement of metabolite movement across the envelope and of the pH in the stroma and the thylakoid space in intact chloroplasts.  Methods in Enzymology. (1980);  69 604-613
  • 14 Hemmerlin A., Hoeffler J. F., Meyer O., Tritsch D., Kagan I. A., Grosdemange-Billiard C., Rohmer M., Bach T. J.. Cross-talk between the cytosolic mevalonate and the plastidial methylerythritol phosphate pathways in tobacco bright yellow-2 cells.  Journal of Biological Chemistry. (2003);  278 26666-26676
  • 15 Kammerer B., Fischer K., Hilpert B., Schubert S., Gutensohn M., Weber A., Flügge U. I.. Molecular characterization of a carbon transporter in plastids from heterotrophic tissues: the glucose 6-phosphate/phosphate antiporter.  Plant Cell. (1998);  10 105-117
  • 16 Knappe S., Löttgert T., Schneider A., Voll L., Flügge U. I., Fischer K.. Characterization of two functional phosphoenolpyruvate/phosphate translocator (PPT) genes in Arabidopsis - AtPPT1 may be involved in the provision of signals for correct mesophyll development.  Plant Journal. (2003);  36 411-420
  • 17 Kreuz K., Kleinig H.. Synthesis of prenyl lipids in cells of spinach leaf.  European Journal of Biochemistry. (1984);  141 531-536
  • 18 Kruger N. J., von Schaewen A.. The oxidative pentose phosphate pathway: structure and organisation.  Current Opinion in Plant Biology. (2003);  6 236-246
  • 19 Lichtenthaler H. K., Schwender J., Disch A., Rohmer M.. Biosynthesis of isoprenoids in higher plant chloroplasts proceeds via a mevalonate-independent pathway.  FEBS Letters. (1997);  400 271-274
  • 20 McGarvey D. J., Croteau R.. Terpenoid metabolism.  Plant Cell. (1995);  7 1015-1026
  • 21 Nagata N., Suzuki M., Yoshida S., Muranaka T.. Mevalonic acid partially restores chloroplast and etioplast development in Arabidopsis lacking the non-mevalonate pathway.  Planta. (2002);  216 345-350
  • 22 Rodríguez-Concepción M., Forés O., Martinez-García J. F., González V., Phillips M. A., Ferrer A., Boronat A.. Distinct light-mediated pathways regulate the biosynthesis and exchange of isoprenoid precursors during Arabidopsis seedling development.  Plant Cell. (2004);  16 144-156
  • 23 Schuhr C. A., Radykewicz T., Sagner S., Latzel C., Zenk M. H., Arigoni D., Bacher A., Rohdich F., Eisenreich W.. Quantitative assessment of crosstalk between the two isoprenoid biosynthesis pathways in plants by NMR spectroscopy.  Phytochemical Reviews. (2003);  2 3-16
  • 24 Soler E., Clastre M., Bantignies B., Marigo G., Ambid C.. Uptake of isopentenyl diphosphate by plastids from Vitis vinifera L. cell suspensions.  Planta. (1993);  191 324-329

U.-I. Flügge

Lehrstuhl Botanik II
Universität zu Köln

Gyrhofstraße 15

50931 Köln

Germany

Email: ui.fluegge@uni-koeln.de

Editor: A. Weber