Plant Biol (Stuttg) 2005; 7(1): 58-66
DOI: 10.1055/s-2004-830476
Research Paper

Georg Thieme Verlag Stuttgart KG · New York

The Quantum Yield of CO2 Fixation is Reduced for Several Minutes after Prior Exposure to Darkness. Exploration of the Underlying Causes

M. U. F. Kirschbaum1 , 2 , V. Oja3 , A. Laisk3
  • 1CSIRO Forestry and Forest Products, P.O. Box E4008, Kingston ACT 2604, Australia
  • 2CRC for Greenhouse Accounting, P.O. Box 475, Canberra ACT 2601, Australia
  • 3Institute of Molecular and Cell Biology, Tartu University, Riia st. 23, Tartu 51010, Estonia
Further Information

Publication History

Received: August 18, 2004

Accepted: October 28, 2004

Publication Date:
21 January 2005 (online)

Abstract

Previous work has shown that the apparent quantum yield of CO2 fixation can be reduced for up to several minutes after prior exposure to darkness. In the work reported here, we investigated this phenomenon more fully and have deduced information about the underlying processes. This was done mainly by concurrent measurements of O2 and CO2 exchange in an oxygen-free atmosphere. Measurements of O2 evolution indicated that photochemical efficiency was not lost through dark adaptation, and that O2 evolution could proceed immediately at high rates provided that there were reducible pools of photosynthetic intermediates. Part of the delay in reaching the full quantum yield of CO2 fixation could be attributed to the need to build up pools of photosynthetic intermediates to high enough levels to support steady rates of CO2 fixation. There was no evidence that Rubisco inactivation contributed towards delayed CO2 uptake (under measurement conditions of low light). However, we obtained evidence that an enzyme in the reaction path between triose phosphates and RuBP must become completely inactivated in the dark. As a consequence, in dark-adapted leaves, a large amount of triose phosphates were exported from the chloroplast over the first minute of light rather than being converted to RuBP for CO2 fixation. That pattern was not observed if the pre-incubation light level was increased to just 3 - 5 µmol quanta m-2 s-1. The findings from this work underscore that there are fundamental differences in enzyme activation between complete darkness and even a very low light level of only 3 - 5 µmol quanta m-2 s-1 which predispose leaves to different gas exchange patterns once leaves are transferred to higher light levels.

References

  • 1 Akamba L. M., Anderson L. E.. Light modulation of glyceraldehyde-3-phosphate dehydrogenase and glucose-6-phosphate dehydrogenase by photosynthetic electron flow in pea chloroplasts.  Plant Physiology. (1981);  67 197-200
  • 2 Anderson L. E., Nehrlich S. C., Champigny M. L.. Light modulation of enzyme activity.  Plant Physiology. (1978);  61 601-605
  • 3 Ehleringer J., Björkman O.. Quantum yields for CO2 uptake in C3 and C4 plants.  Plant Physiology. (1977);  59 86-90
  • 4 Flügge U. I., Heldt H. W.. Chloroplast phosphate-triose phosphate-phosphoglycerate translocator: its identification, isolation, and reconstitution.  Methods in Enzymology. (1986);  125 716-730
  • 5 Heldt H. W., Chon C. J., Maronde D., Herold A., Stankovic Z. S., Walker D. A., Kraminer A., Kirk M. R., Heber U.. Role of orthophosphate and other factors in the regulation of starch formation in leaves and isolated chloroplasts.  Plant Physiology. (1977);  59 1146-1155
  • 6 Heldt H. W., Stitt M.. The regulation of sucrose synthesis in leaves.  Progress in Photosynthesis Research. (1987);  10 675-684
  • 7 Häusler R. E., Schlieben N. H., Flügge U.-I.. Control of carbon partitioning and photosynthesis by the triose phosphate/phosphate translocator in transgenic tobacco plants (Nicotiana tabacum). II. Assessment of control coefficients of the triose phosphate/phosphate translocator.  Planta. (2000);  210 383-390
  • 8 Kirschbaum M. U. F., Farquhar G. D.. Investigation of the CO2 dependence of quantum yield and respiration in Eucalyptus pauciflora. .  Plant Physiology. (1987);  83 1032-1036
  • 9 Kirschbaum M. U. F., Küppers M., Schneider H., Giersch C., Noe S.. Modelling photosynthesis in fluctuating light with inclusion of stomatal conductance, biochemical activation and pools of key photosynthetic intermediates.  Planta. (1997);  204 16-26
  • 10 Kirschbaum M. U. F., Ohlemacher C., Küppers M.. Loss of quantum yield in extremely low light.  Planta. (2004);  218 1046-1053
  • 11 Kirschbaum M. U. F., Pearcy R. W.. Concurrent measurements of oxygen and carbon-dioxide exchange during lightflecks in Alocasia macrorrhiza (L.) G. Don.  Planta. (1988);  174 527-533
  • 12 Laisk A., Oja V.. Dynamic Gas Exchange of Leaf Photosynthesis. Measurement and Interpretation. Canberra, Australia; CSIRO Publishing (1998)
  • 13 Laisk A., Oja V., Kiirats O.. Assimilatory power (post-illumination CO2 uptake) in leaves - measurement, environmental dependencies and kinetic properties.  Plant Physiology. (1984);  76 723-729
  • 14 Laisk A., Oja V., Kiirats O., Raschke K., Heber U.. The state of photosynthetic apparatus in leaves as analyzed by rapid gas exchange and optical methods: the pH of the chloroplast stroma and activation of enzymes in vivo.  Planta. (1989);  177 350-358
  • 15 Laisk A., Oja V., Rasulov B., Rämma H., Eichelmann H., Kasparova I., Pettai H., Padu E., Vapaavuori E.. A computer-operated routine of gas exchange and optical measurements to diagnose photosynthetic apparatus in leaves.  Plant, Cell and Environment. (2002);  25 923-943
  • 16 Li D., Stevens F. J., Schiffer M., Anderson L. E.. Mechanism of light modulation: identification of potential redox-sensitive cysteines distal to catalytic site in light-activated chloroplast enzymes.  Biophysical Journal. (1994);  67 29-35
  • 17 McCree K. J.. The action spectrum, absorptance and quantum yield of photosynthesis in crop plants.  Agricultural Meteorology. (1972);  9 191-216
  • 18 Pearcy R. W.. Sunflecks and photosynthesis in plant canopies.  Annual Review of Plant Physiology and Plant Molecular Biology. (1990);  41 421-453
  • 19 Pearcy R. W., Chazdon R. L., Gross L. J., Mott K. A.. Photosynthetic utilization of sunflecks, a temporally patchy resource on a time scale of seconds to minutes. Caldwell, M. M. and Pearcy, R. W., eds. Exploitation of Environmental Heterogeneity by Plants: Ecophysiological Processes above and below Ground. San Diego, USA; Academic Press (1994): 175-207
  • 20 Portis  Jr. A. R.. Rubisco activase.  Biochimica et Biophysica Acta. (1990);  1015 15-28
  • 21 Preiss J., Robinson S., Spilatro S., McNamara K.. Starch synthesis and its regulation. Heath R. L. and Preiss J., eds. Regulation of Carbon Partitioning in Photosynthetic Tissue. Riverside, USA; University of California (1985): 1-26
  • 22 Radmer R. J., Kok B.. Photoreduction of O2 primes and replaces CO2 assimilation.  Plant Physiology. (1976);  58 336-340
  • 23 Ruuska S., Andrews J. T., Badger M. R., Hudson G. S., Laisk A., Price D., von Caemmerer S.. The interplay between limiting processes in C3 photosynthesis studied by rapid-response gas exchange using transgenic tobacco impaired in photosynthesis.  Australian Journal of Plant Physiology. (1998);  25 859-870
  • 24 Scheibe R.. Redox-modulation of chloroplast enzymes. A common principle for individual control.  Plant Physiology. (1991);  96 1-3
  • 25 Scheibe R., Fickenscher K., Ashton A. R.. Studies on the mechanism of the reductive activation of NADP-malate dehydrogenase by thioredoxin mid and low-molecular-weight thiols.  Biochimica et Biophysica Acta. (1986);  870 191-197
  • 26 Seemann J. R., Kirschbaum M. U. F., Sharkey T. D., Pearcy R. W.. Regulation of ribulose-1,5-bisphosphate carboxylase activity in Alocasia macrorrhiza in response to step changes in light intensity.  Plant Physiology. (1988);  88 148-152
  • 27 Sharp R. E., Matthews M. A., Boyer J. S.. Kok effect and the quantum yield of photosynthesis. Light partially inhibits dark respiration.  Plant Physiology. (1984);  75 95-101
  • 28 Stegemann J., Timm H. C., Küppers M.. Simulation of photosynthetic plasticity in response to highly fluctuating light: an empirical model integrating dynamic photosynthetic induction and capacity.  Trees. (1999);  14 145-160
  • 29 Timm H. C., Stegemann J., Küppers M.. Photosynthetic induction strongly affects the light compensation point of net photosynthesis and coincidentally the apparent quantum yield.  Trees. (2002);  16 47-62
  • 30 Vines M. H., Armitage A. M., Chen S., Tu Z. P., Back C. C.. A transient burst of CO2 from Geranium leaves during illumination at various light intensities as a measure of photorespiration.  Plant Physiology. (1982);  70 629-631
  • 31 Walker D.. Excited leaves.  New Phytologist. (1992);  121 325-345
  • 32 Zhang N., Kallis R. P., Ewy R. G., Portis  Jr. A. R.. Light modulation of Rubisco in Arabidopsis requires a capacity for redox regulation of the larger Rubisco activase isoform.  Proceedings of the National Academy of Sciences of the USA. (2002);  99 3330-3334

M. U. F. Kirschbaum

CSIRO Forestry and Forest Products

P.O. Box E4008

Kingston ACT 2604

Australia

Email: miko.kirschbaum@csiro.au

Editor: R. Monson

    >