References
<A NAME="RU21704ST-1">1 </A>
Golay A.
Swislocki ALM.
Chen YD.
Reaven GM.
Metabolism
1987,
36:
692
<A NAME="RU21704ST-2">2 </A>
McGarry JD.
Brown NF.
Eur. J. Biochem.
1997,
244:
1
<A NAME="RU21704ST-3">3 </A> For a review, see:
Giannessi F.
Drugs Future
2003,
28:
371
<A NAME="RU21704ST-4A">4a </A>
Giannessi F.
Chiodi P.
Marzi M.
Minetti P.
Pessotto P.
De Angelis F.
Tassoni E.
Conti R.
Giorgi F.
Mabilia M.
Dell’Uomo N.
Muck S.
Tinti MO.
Carminati P.
Arduini A.
J. Med. Chem.
2001,
44:
2383
<A NAME="RU21704ST-4B">4b </A>
Giannessi F.
Pessotto P.
Tassoni E.
Chiodi P.
Conti R.
De Angelis F.
Dell’Uomo N.
Catini R.
Deias R.
Tinti MA.
Carminati P.
Arduini A.
J. Med. Chem.
2003,
46:
303
<A NAME="RU21704ST-5A">5a </A>
Ordóñez M.
González-Morales A.
Ruiz C.
De la Cruz-Cordero R.
Fernández-Zertuche M.
Tetrahedron: Asymmetry
2003,
14:
1775
<A NAME="RU21704ST-5B">5b </A>
Mikolajczyk M.
Luczak J.
Kielbasinski P.
J. Org. Chem.
2002,
67:
7872
<A NAME="RU21704ST-5C">5c </A>
Wróblewski AE.
Halajewska-Wosik A.
Eur. J. Org. Chem.
2002,
2758
<A NAME="RU21704ST-5D">5d </A>
Tadeusiak E.
Krawiecka B.
Michalski J.
Tetrahedron Lett.
1999,
40:
1791
<A NAME="RU21704ST-5E">5e </A>
Ordóñez M.
De la Cruz R.
Fernández-Zertuche M.
Muñoz-Hernández M.-A.
Tetrahedron: Asymmetry
2002,
13:
559
<A NAME="RU21704ST-5F">5f </A>
Thomas AA.
Sharpless KB.
J. Org. Chem.
1999,
64:
8379
<A NAME="RU21704ST-6">6 </A> For a review, see:
Kolb HC.
van Nieuwenhze MS.
Sharpless KB.
Chem. Rev.
1994,
94:
2483
<A NAME="RU21704ST-7A">7a </A>
Yokomatsu T.
Yoshida Y.
Suemune K.
Yamagishi T.
Shibuya S.
Tetrahedron: Asymmetry
1995,
6:
365
<A NAME="RU21704ST-7B">7b </A>
Yokomatsu T.
Yamagishi T.
Suemune K.
Yoshida Y.
Shibuya S.
Tetrahedron
1998,
54:
767
<A NAME="RU21704ST-8">8 </A> Lohray and co-workers reported similar AD reactions independently. See:
Lohray BB.
Maji DK.
Nandanan E.
Indian J. Chem., Sect. B
1995,
34:
1023
<A NAME="RU21704ST-9">9 </A>
Yokomatsu T.
Yamagishi T.
Sada T.
Suemune K.
Shibuya S.
Tetrahedron
1998,
54:
781
<A NAME="RU21704ST-10">10 </A>
The 1.4 g of AD-mix-α, purchased from Aldrich, was used for conversion of 1.0 mmol
of the olefin, which contained 0.2 mol% of K2 OsO4 ·2H2 O and 1.0 mol% of chiral ligand (DHQ)2 PHAL. However, an additional K2 OsO4 ·2H2 O (0.8 mol%) was critical for AD reactions of β,γ-unsaturated phosphonates since the
AD reaction of 2b in the absence of the osmium salt resulted in slow reaction rates (20 h at 25 °C)
and slight decrease in enantioselectivity (54% yield, 30% ee).
<A NAME="RU21704ST-11">11 </A>
Compound 3c : oil; [α]D
26 -2.14 (c 1.03, MeOH). 1 H NMR (400 MHz, CDCl3 ): δ = 7.97 (2 H, d, J = 8.8 Hz), 6.87 (2 H, d, J = 8.8 Hz), 4.38 (2 H, d, J = 5.8 Hz), 4.09 (4 H, q, J = 6.9 Hz), 4.05-4.00 (1 H, m), 3.87-3.85 (1 H, m), 3.82 (3 H, s), 2.22-1.96 (2 H,
m), 1.29 (6 H, t, J = 7.0 Hz). 13 C NMR (100 MHz, CDCl3 ): δ = 166.4, 163.5, 131.7, 122.2, 113.6, 72.4 (d, J
PC = 14.9 Hz), 66.8 (d, J
PC = 4.5 Hz), 65.5, 62.1 (d, J
PC = 3.2 Hz), 55.4, 30.1 (d, J
PC = 140.0 Hz), 16.3 (d, J
PC = 5.9 Hz). 31 P NMR (162 MHz, CDCl3 ): δ = 29.36. IR (neat): 3356, 1713, 1258, 1168 cm-1 . ESI-MS: m/z = 399 [MNa+ ]. HRMS: m/z calcd for C16 H25 O8 NaP [MNa+ ]: 399.1185. Found: 399.1185.
<A NAME="RU21704ST-12A">12a </A>
Corey EJ.
Guzman-Perez A.
Noe MC.
J. Am. Chem. Soc.
1995,
117:
10805
<A NAME="RU21704ST-12B">12b </A>
Corey EJ.
Noe MC.
Guzman-Perez A.
J. Am. Chem. Soc.
1995,
117:
10817
<A NAME="RU21704ST-13">13 </A> Kobayashi and co-workers observed that a related AD of α-olefins with dibenzyl
phosphonate showed higher enantioselectivity than the corresponding diethyl phosphonate.
See:
Kobayashi Y.
William AD.
Tokoro Y.
J. Org. Chem.
2001,
66:
7903
<A NAME="RU21704ST-14">14 </A>
Compound 7b (for a sample of 100% ee): mp 93-95 °C; [α]D
22 -7.92 (c 1.01, CHCl3 ). 1 H NMR (400 MHz, CDCl3 ): δ = 7.39-7.32 (10 H, m), 5.12-4.96 (4 H, m), 3.70 (1 H, qd, J = 4.2, 14.9 Hz), 3.59 (1 H, td, J = 5.6, 11.3 Hz), 2.04-1.96 (2 H, m), 1.13 (3 H, d, J = 6.3 Hz). 13 C NMR (100 MHz, CDCl3 ): δ = 136.0 (d, J
PC = 5.5 Hz), 135.9 (d, J
PC = 5.0 Hz), 128.7, 128.6, 128.6, 128.1, 128.0, 70.7 (d, J
PC = 17.4 Hz), 70.4 (d, J
PC = 5.6 Hz), 67.6 (d, J
PC = 6.4 Hz), 30.5 (d, J
PC = 139.6 Hz), 18.9. 31 P NMR (162 MHz, CDCl3 ): δ = 31.91. IR (KBr): 3359, 2968, 1214 cm-1 . ESI-MS: m/z = 351 [MH+ ]. HRMS: m/z calcd for C18 H24 O5 P [MH+ ]: 351.1361. Found: 351.1352.
<A NAME="RU21704ST-15A">15a </A>
Lohray BB.
Synthesis
1992,
1035
<A NAME="RU21704ST-15B">15b </A>
Bittman R.
Byun H.-S.
He L.
Tetrahedron
2000,
56:
7051
<A NAME="RU21704ST-16">16 </A>
Gao Y.
Sharpless KB.
J. Org. Chem.
1988,
110:
7538
<A NAME="RU21704ST-17">17 </A>
Compound 12 : oil. 1 H NMR (400 MHz, CDCl3 ): δ = 7.37-7.28 (10 H, m), 5.03 (2 H, dd, J = 9.1, 11.8 Hz), 4.95 (2 H, dd, J = 8.2, 11.8 Hz), 4.02-3.87 (1 H, m), 3.15-3.11 (1 H, m), 2.06-1.97 (2 H, m), 1.00
(3 H, d, J = 6.6 Hz), 0.91 (9 H, t, J = 7.9 Hz), 0.58 (6 H, q, J = 7.9 Hz). 13 C NMR (100 MHz, CDCl3 ): δ = 136.2 (d, J
PC = 5.4 Hz), 128.5-127.7 (aromatic), 71.6, 67.2 (d, J
PC = 6.6 Hz), 67.1 (d, J
PC = 6.5 Hz), 51.3 (d, J
PC = 7.6 Hz), 30.1 (d, J
PC = 138.0 Hz), 17.0, 6.8, 4.9. 31 P NMR (162 MHz, CDCl3 ): δ = 30.81. ESI-MS: m/z = 464 [MH+ ]. HRMS: m/z calcd for C24 H39 NO4 SiP [MH+ ]: 464.2386. Found: 464.2382.
<A NAME="RU21704ST-18">18 </A>
The chemical structure of 12 was determined after the conversion into γ-amino-β-ketophosphonate 13 through tosylation, desilylation, and oxidation with PDC. In 1 H the NMR spectrum (400 MHz, CDCl3 ) of 13 , a signal ascribed to the Me group at the γ-position was observed at δ = 1.18 ppm
as a doublet (J = 7.1 Hz) but not as a singlet corresponding to regioisomeric β-amino-γ-ketophosphonate
(Scheme
[7 ]
).
Scheme 7