References
For some leading references on cyclic peptide based tubular structures and ion channels
see:
<A NAME="RG32604ST-1A">1a</A>
Rosenthal-Aizman K.
Svensson G.
Unden A.
J. Am. Chem. Soc.
2004,
126:
3372
<A NAME="RG32604ST-1B">1b</A>
Horne WS.
Stout CD.
Ghadiri MR.
J. Am. Chem. Soc.
2003,
125:
9372
<A NAME="RG32604ST-1C">1c</A>
Amorín M.
Castedo L.
Granja JR.
J. Am. Chem. Soc.
2003,
125:
2844
<A NAME="RG32604ST-1D">1d</A>
Sánchez-Quesada J.
Isler MP.
Ghadiri MR.
J. Am. Chem. Soc.
2002,
124:
10004
<A NAME="RG32604ST-1E">1e</A>
Semetey V.
Didierjean C.
Briand J.-P.
Aubry A.
Guichard G.
Angew. Chem. Int. Ed.
2002,
41:
1895
<A NAME="RG32604ST-1F">1f</A>
Gauthier D.
Baillargeon P.
Drouin M.
Dory YL.
Angew. Chem. Int. Ed.
2001,
40:
4635
<A NAME="RG32604ST-1G">1g</A>
Ishida H.
Qi Z.
Sokabe M.
Donowaki K.
Inoue Y.
J. Org. Chem.
2001,
66:
2978
<A NAME="RG32604ST-1H">1h</A>
Bong DT.
Clark TD.
Granja JR.
Ghadiri MR.
Angew. Chem. Int. Ed.
2001,
40:
988
<A NAME="RG32604ST-1I">1i</A>
Gademann K.
Seebach D.
Helv. Chim. Acta
2001,
84:
2924 ; and the references therein
<A NAME="RG32604ST-1J">1j</A>
Ranganathan D.
Lakshmi C.
Karle I.
J. Am. Chem. Soc.
1999,
121:
6103
<A NAME="RG32604ST-1K">1k</A>
Kim HS.
Hartgaerink JD.
Ghadiri MR.
J. Am. Chem. Soc.
1998,
120:
4417
<A NAME="RG32604ST-1L">1l</A>
Hartgerink JD.
Clark TD.
Ghadiri MR.
Chem.-Eur. J.
1998,
4:
1367
<A NAME="RG32604ST-1M">1m</A>
Eisenberg B.
Acc. Chem. Res.
1998,
31:
117
<A NAME="RG32604ST-1N">1n</A>
Voyer N.
Top. Curr. Chem.
1996,
184:
1
<A NAME="RG32604ST-1O">1o</A>
Gokel GW.
Murillo O.
Acc. Chem. Res.
1996,
29:
425
<A NAME="RG32604ST-1P">1p</A>
Ghadiri MR.
Granja JR.
Buehler LK.
Nature
1994,
369:
301
For recent reviews see:
<A NAME="RG32604ST-2A">2a</A>
Choi K.
Hamilton AD.
Coord. Chem. Rev.
2003,
240:
101
<A NAME="RG32604ST-2B">2b</A>
Gale PA.
Coord. Chem. Rev.
2001,
213:
79
<A NAME="RG32604ST-2C">2c</A>
Gale PA.
Coord. Chem. Rev.
2000,
199:
181
For some recent representative works see:
<A NAME="RG32604ST-3A">3a</A>
Choi K.
Hamilton AD.
J. Am. Chem. Soc.
2003,
125:
10241
<A NAME="RG32604ST-3B">3b</A>
Choi K.
Hamilton AD.
J. Am. Chem. Soc.
2001,
123:
2456
<A NAME="RG32604ST-3C">3c</A>
Cousins GRL.
Furlan RLE.
Ng Y.-F.
Redman JE.
Sanders JKM.
Angew. Chem. Int. Ed.
2001,
40:
423
<A NAME="RG32604ST-3D">3d</A>
Kubik S.
Goddard R.
Eur. J. Org. Chem.
2001,
311
<A NAME="RG32604ST-3E">3e</A>
Anzenbacher P.
Jursíková K.
Lynch VM.
Gale PA.
Sessler JL.
J. Am. Chem. Soc.
1999,
121:
11020
<A NAME="RG32604ST-3F">3f</A>
Snowdown TS.
Bisson AP.
Anslyn EV.
J. Am. Chem. Soc.
1999,
121:
6324
<A NAME="RG32604ST-3G">3g</A>
Cho CY.
Youngquist RS.
Paikoff SJ.
Beresini MH.
Hebert AR.
Berleau LT.
Liu CW.
Wemmer DE.
Keough T.
Schultz PG.
J. Am. Chem. Soc.
1998,
120:
7706
<A NAME="RG32604ST-4">4</A>
Molecular Recognition Tetrahedron Symposia-in-Print, Tetrahedron
1995,
51(2): No. 56; Hamilton, A. D., Guest Ed.; Pergamon Press: Oxford, U.K
<A NAME="RG32604ST-5">5</A>
Molecular Recognition Chem. Rev.
1997,
97 (5): ; Gellman, S. H., Guest Ed.; American Chemical Society: Washington, DC, USA
<A NAME="RG32604ST-6">6</A>
Perry JJB.
Kilburn JD.
Contemp. Org. Synth.
1997,
4:
61
<A NAME="RG32604ST-7">7</A>
Chakraborty TK.
Tapadar S.
Kumar SK.
Tetrahedron Lett.
2002,
43:
1317
For some earlier works on the cyclic receptors for carboxylate bindings see:
<A NAME="RG32604ST-8A">8a</A>
Moore G.
Levacher V.
Bourguignon J.
Dupas G.
Tetrahedron Lett.
2001,
42:
261
<A NAME="RG32604ST-8B">8b</A>
Ranganathan D.
Lakshmi C.
Karle IL.
J. Am. Chem. Soc.
1999,
121:
6103
<A NAME="RG32604ST-8C">8c</A>
Flack SS.
Chaumette JL.
Kilburn JD.
Langley GJ.
Webster M.
J. Chem. Soc., Chem. Commun.
1993,
399
<A NAME="RG32604ST-8D">8d</A>
Lehn JM.
Méric R.
Vigneron JP.
Bkouche-Waksman I.
Pascard C.
J. Chem. Soc., Chem. Commun.
1991,
62
<A NAME="RG32604ST-8E">8e</A>
Garcia-Tellado F.
Goswami S.
Chang S.-K.
Geib SJ.
Hamilton AD.
J. Am. Chem. Soc.
1990,
112:
7393
<A NAME="RG32604ST-8F">8f</A>
Hosseini MW.
Lehn JM.
J. Am. Chem. Soc.
1982,
104:
3525
For recent reviews see:
<A NAME="RG32604ST-9A">9a</A>
Archer EA.
Gong H.
Krische MJ.
Tetrahedron
2001,
57:
1139
<A NAME="RG32604ST-9B">9b</A>
Beer PD.
Gale PA.
Angew. Chem. Int. Ed.
2001,
40:
486
For recent reviews see:
<A NAME="RG32604ST-10A">10a</A>
Nicolaou KC.
Boddy CNC.
Bräse S.
Winssinger N.
Angew. Chem. Int. Ed.
1999,
38:
2096
<A NAME="RG32604ST-10B">10b</A>
Williams DH.
Bardsley B.
Angew. Chem. Int. Ed.
1999,
38:
1172
<A NAME="RG32604ST-11">11</A>
Chakraborty TK.
Srinivasu P.
Bikshapathy E.
Nagaraj R.
Vairamani M.
Kumar SK.
Kunwar AC.
J. Org. Chem.
2003,
68:
6257
<A NAME="RG32604ST-12A">12a</A>
Jayaprakash S.
Pattenden G.
Viljoen MS.
Wilson C.
Tetrahedron
2003,
59:
6637
<A NAME="RG32604ST-12B">12b</A>
Azumaya I.
Okamoto T.
Imabeppu F.
Takayanagi H.
Heterocycles
2003,
60:
1419
<A NAME="RG32604ST-12C">12c</A>
Haberhauer G.
Rominger F.
Tetrahedron Lett.
2002,
43:
6335
<A NAME="RG32604ST-12D">12d</A>
Pattenden G.
Thompson T.
Tetrahedron Lett.
2002,
43:
2459
<A NAME="RG32604ST-12E">12e</A>
Pohl S.
Goddard R.
Kubik S.
Tetrahedron Lett.
2001,
42:
7555
<A NAME="RG32604ST-12F">12f</A>
Bertram A.
Pattenden G.
Synlett
2001,
1873
<A NAME="RG32604ST-12G">12g</A>
Somogyi L.
Haberhauer GH.
Rebek J.
Tetrahedron
2001,
57:
1699
<A NAME="RG32604ST-12H">12h</A>
Pattenden G.
Thompson T.
Chem. Commun.
2001,
717
<A NAME="RG32604ST-12I">12i</A>
Singh Y.
Sokolenko N.
Kelso MJ.
Gahan LR.
Abbenante G.
Fairlie DP.
J. Am. Chem. Soc.
2001,
123:
333
<A NAME="RG32604ST-12J">12j</A>
Bertram A.
Pattenden G.
Synlett
2000,
1519
<A NAME="RG32604ST-12K">12k</A>
Blake AR.
Hannam JS.
Jolliffe KA.
Pattenden G.
Synlett
2000,
1515
<A NAME="RG32604ST-12L">12l</A>
Bertram A.
Hannam JS.
Jolliffe KA.
de Turiso FG.-L.
Pattenden G.
Synlett
1999,
1723
<A NAME="RG32604ST-12M">12m</A>
Sokolenko N.
Abbenante G.
Scanlon MJ.
Jones A.
Gahan LR.
Hanson GR.
Fairlie DP.
J. Am. Chem. Soc.
1999,
121:
2603
<A NAME="RG32604ST-12N">12n</A>
Wipf P.
Miller CP.
J. Am. Chem. Soc.
1992,
114:
10975
<A NAME="RG32604ST-12O">12o</A>
Chen S.
Xu J.
Tetrahedron Lett.
1991,
32:
6711
<A NAME="RG32604ST-13A">13a</A>
Reetz MT.
Drewes MW.
Schwickardi R.
Org. Synth.
1998,
76:
110
<A NAME="RG32604ST-13B">13b</A>
Reetz MT.
Chem. Rev.
1999,
99:
1121
<A NAME="RG32604ST-14A">14a</A>
Although the reactions could be carried out using racemic glyceradehyde acetonide,
the chiral version was preferred for easy purification and product characterization.
<A NAME="RG32604ST-14B">14b</A>
Gung BW.
Kumi G.
J. Org. Chem.
2003,
68:
5956
<A NAME="RG32604ST-15A">15a</A>
Brown CA.
Ahuja VK.
J. Chem. Soc., Chem. Commun.
1973,
553
<A NAME="RG32604ST-15B">15b</A>
Brown CA.
Ahuja VK.
J. Org. Chem.
1973,
38:
2226
<A NAME="RG32604ST-16">16</A>
Nishiyama H.
Sasaki M.
Itoh K.
Chem. Lett.
1981,
1363
<A NAME="RG32604ST-17">17</A>
Selected physical data of 2b: R
f
= 0.4 (silica, 8% MeOH in CHCl3); [α]D
29 -33.9 (c 0.115, MeOH). 1H NMR (200 MHz, DMSO-d
6): δ = 8.37 (d, J = 9.52 Hz, 1 H, NH), 7.02 (d, J = 2.93 Hz, 1 H, furan ring proton), 6.51 (d, J = 2.97 Hz, 1 H, furan ring proton), 5.41 (dq, J = 9.52, 7.32 Hz, 1 H, C
-H), 1.54 (d, J = 7.32 Hz, 3 H, Cβ-H
3). MS (LSI-MS): m/z = 412 [M + H]+.
Selected physical data of 2c: R
f
= 0.5 (silica, 8% MeOH in CHCl3); [α]D
29 -36.4 (c 0.055, MeOH). 1H NMR (200 MHz, DMSO-d
6): δ = 8.17 (d, J = 10.41 Hz, 1 H, NH), 6.98 (d, J = 2.97 Hz, 1 H, furan ring proton), 6.49 (d, J = 2.97 Hz, 1 H, furan ring proton), 4.91 (dd, J = 10.41, 9.66 Hz, 1 H, Cα-H), 2.04 (m, 1 H, Cβ-H), 1.04 (d, J = 6.69 Hz, 3 H, Cγ-H
3), 0.86 (d, J = 6.69 Hz, 3 H, Cγ-H′
3). MS (ESI): m/z = 496 [M + H]+, 518 [M + Na]+, 519 [M + Na + H]+.
Selected physical data of 2d: R
f
= 0.5 (silica, 7% MeOH in CHCl3); [α]D
29 -100.0 (c 0.070, MeCN). 1H NMR (200 MHz, DMSO-d
6): δ = 8.43 (d, J = 8.92 Hz, 1 H, NH), 7.17 (m, 5 H, aromatic protons), 6.83 (d, J = 2.97 Hz, 1 H, furan ring proton), 6.15 (d, J = 2.97 Hz, 1 H, furan ring proton), 5.46 (ddd, J = 8.92, 8.18 Hz, 1 H, Cα-H), 3.19 (m, 2 H, Cβ-H
2). MS (LSI-MS): m/z = 640 [M + H]+, 662 [M + Na]+.
<A NAME="RG32604ST-18">18</A>
The details of the theoretical calculations will be published separately.
<A NAME="RG32604ST-19">19</A>
Moberg C.
Angew. Chem. Int. Ed.
1998,
37:
248
<A NAME="RG32604ST-20A">20a</A>
Macomber RS.
J. Chem. Educ.
1992,
69:
375
<A NAME="RG32604ST-20B">20b</A>
Djedaïni F.
Lin SZ.
Perly B.
Wouessidjewe D.
J. Pharm. Sci.
1990,
79:
643
<A NAME="RG32604ST-21">21</A>
Kelly TR.
Kim MH.
J. Am. Chem. Soc.
1994,
116:
7072
<A NAME="RG32604ST-22A">22a</A>
Gil VMS.
Oliveira NC.
J. Chem. Educ.
1990,
67:
473
<A NAME="RG32604ST-22B">22b</A>
Blanda MT.
Horner JH.
Newcomb M.
J. Org. Chem.
1989,
54:
4626
<A NAME="RG32604ST-23">23</A>
The association constant (K
a) was obtained by using the following equation: K
a = α/{(1 - α)([G] - α[H])}, where α = (δ - δ
0)/(δ
max - δ
0), δ
0 is the initial chemical shift (host amide proton), δ is the chemical shift at each titration point, and δ
max is the chemical shift when the receptor is entirely bound (see ref.
[21]
). The titrations were usually repeated several times to attain error limits as low
as possible. The average association constant was determined from the values of each
titration point and the standard deviations are specified.
<A NAME="RG32604ST-24A">24a</A>
Jones RW.
Barry AL.
Gavan TL.
Washington JA.
In Manual of Clinical Microbiology
4th ed.:
Lennette EH.
Balows A.
Hausler WJ.
Shadomy HJ.
American Society for Microbiology;
Washington DC:
1985.
p.972-977
<A NAME="RG32604ST-24B">24b</A>
Lalitha N.
Annapurna J.
Iyenger DS.
Bhalerao UT.
Arzneim. Forsch. (Drug Res.)
1991,
41:
827
<A NAME="RG32604ST-25">25</A>
The details of the biological studies will be published separately.