Aktuelle Rheumatologie 2005; 30(1): 15-22
DOI: 10.1055/s-2005-857988
Originalarbeit

© Georg Thieme Verlag KG Stuttgart · New York

Etiology and Pathogenesis of Sjögren’s Syndrome: an Overview

Ätiologie und Pathogenese des Sjögren-Syndroms (SS): eine ÜbersichtC. Vitali1 , N. Del Papa2
  • 1Dept. of Internal Medicine and Rheumatology, Hospital of Piombino
  • 2Rheumatic Disease Unit, ‘G.Pini’ Hospital, Milan, Italy
Further Information

Publication History

Publication Date:
21 February 2005 (online)

Zusammenfassung

Das Sjögren-Syndrom (SS) ist eine systemische Autoimmunerkrankung, die durch lymphozytäre Infiltrate exokriner Drüsen - vor allem der Speichel- und Tränendrüsen - charakterisiert ist. In ca. 20 % aller Fälle sind auch einige inner Organe, wie Nieren und Lunge, betroffen. Die Pathogenese des SS ist weitgehend ungeklärt. Genetische und Umweltfaktoren scheinen eine Schlüsselrolle im Rahmen der Entstehung des SS zu spielen. Insbesondere wurde gezeigt, dass einige Virusinfekte die Krankheit auslösen können. In den betroffenen Organen sind die meisten infiltrierenden Zellen CD4 + CD27 + Gedächtniszellen. Darüber hinaus finden sich in den Infiltraten B-Zellen, auf die einige charakteristische Merkmale des SS zurückzuführen sind. Autoantikörper, wie Anti-SSA und -SSB hängen mit B-Zellen zusammen, die sich gegen ubiquitäre Kernantigene richten und die wahrscheinlich bei der Apoptose der Drüsen-Epithelzellen freigesetzt werden. Spezifische Anti-Muscarin(M3)rezeptor-Antikörper könnten, nachdem das Epithel durch chronisch entzündliche Infiltrate geschädigt ist, für die reduzierte Sekretionsleistung der Drüsen bedeutsam sein. Die permanente T-Zell-assoziierte Stimulation und Aktivierung von B-Zellen könnte Ursache der neoplastischen Umwandlung und der Bildung von Lymphomen sein.

Abstract

Sjögren’s syndrome (SS) is a systemic autoimmune disease characterised by lymphocytic infiltrates in exocrine glands, particularly in salivary and lachrymal glands, and in about 20 % of patients also in some internal organs, like kidney and lung. The pathogenesis of SS is poorly understood. Genetic and environmental factors appear to have a key role in favouring the disease development. In particular some viral infections have been demonstrated to be able to trigger the disease process. The majority of the infiltrating cells in target organs are CD4 + CD27 + memory cells. Furthermore, a number of B cells are present in the infiltrates and several features of SS are attributed to their presence. The presence of autoantibodies, such as anti-SSA and -SSB is related to the presence of reactive B cell against ubiquitous nuclear antigens, probably released during the apoptotic process of glandular epithelial cells. The presence of specific anti-muscarinic (M3) receptor antibodies may have some importance in reducing the glandular secretion, behind the epithelial damage caused by the chronic inflammatory infiltrates. The continuous T cell-related stimulation and activation of B cells may induce neoplastic transformation and development of lymphomas.

Reference

  • 1 Jonsson R, Haga H J, Gordon T. Sjögren’s syndrome. Koopman WJ Arthritis and Allied Contitions: a Textbook of Rheumatology. 14th Edition Philadelphia; Lippincott, Williams & Wilkins 2001: 1736-1759
  • 2 Vitali C, Bombardieri S, Jonsson R. et al . Classification criteria for Sjögren’s syndrome: a revised version of the European criteria proposed by the American-European Consensus Group.  Ann Rheum Dis. 2002;  61 554-558
  • 3 Jonsson R, Skarstein K. Experimental models of Sjögren’s Syndrome. Theofilopoulos AN, Bona CA The Molecular Pathology of Autoimmune Diseases 2nd Edition New York; Taylor & Francis 2002: 437-452
  • 4 Johansson A C, Sundler M, Kjellen P. et al . Genetic control of collagen-induced arthritis in a cross with NOD and C57BL/10 mice is dependent on gene regions encoding complement factor 5 and FcgammaRIIb and is not associated with loci controlling diabetes.  Eur J Immunol. 2001;  31 1847-1856
  • 5 Brayer J, Lowry J, Cha S. et al . Alleles from chromosomes 1 and 3 of NOD mice combine to influence Sjögren’s syndrome-like autoimmune exocrinopathy.  J Rheumatol. 2000;  27 1896-1904
  • 6 Cha S, Nagashima H, Brown V B. et al . Two NOD Idd-associated intervals contribute synergistically to the development of autoimmune exocrinopathy (Sjögren’s syndrome) on a healthy murine backgrund.  Arthritis Rheum. 2002;  46 1390-1398
  • 7 Boulard O, Fluteau G, Eloy L. et al . Genetic analysis of autoimmune sialadenitis in nonobese diabetic mice: a major susceptibility region on chromosome 1.  J Immunol. 2002;  168 4192-4201
  • 8 Wu J, Zhou T, He J. et al . Autoimmune disease in mice due to integration of an endogenous retrovirus in an apoptosis gene.  J Exp Med. 1993;  178 461-468
  • 9 Bolstad A I, Wargelius A, Nakken B. et al . Fas and Fas ligand gene polymorphisms in primary Sjögren’s syndrome.  J Rheumatol. 2000;  27 2397-2405
  • 10 Nishihara M, Terada M, Kamogawa J. et al . Genetic basis of autoimmune sialadenitis in MRL/lpr lupus-prone mice: additive and hierarchical properties of polygenic inheritance.  Arthritis Rheum. 1999;  42 2616-2623
  • 11 Saito I, Haruta K, Shimuta M. et al . Fas ligand-mediated exocrinopathy resembling Sjögren’s syndrome in mice transgenic for IL-10.  J Immunol. 1999;  162 2488-2494
  • 12 Green J E, Hinrichs S H, Vogel J. et al . Exocrinopathy resembling Sjögren’s syndrome in HTLV-1 tax transgenic mice.  Nature. 1989;  341 72-74
  • 13 Koike K, Moriya K, Ishibashi K. et al . Sialadenitis histologically resembling Sjögren’s syndrome in mice transgenic for hepatitis C virus envelope genes.  Proc Natl Acad Sci USA. 1997;  94 233-236
  • 14 Reveille J D, Wilson R W, Provost T T. et al . Primary Sjögren’s syndrome and other autoimmune diseases in families. Prevalence and immunogenetic studies in six kindreds.  Ann Intern Med. 1984;  101 748-756
  • 15 Lichtenfeld J L, Kirschner R H, Wiernik P H. Familial Sjögren’s syndrome with associated primary salivary gland lymphoma.  Am J Med. 1976;  60 286-292
  • 16 Doni A, Brancato R, Bartoletti L. et al . Familiar characteristics of Sjögren’s disease. (Clinical contribution and considerations).  Riv Crit Clin Med. 1965;  65 750-759
  • 17 Koivukangas T, Simila S, Heikkinen E. et al . Sjögren’s syndrome and achalasia of the cardia in two siblings.  Pediatrics. 1973;  51 943-945
  • 18 Mason A M, Golding P L. Multiple immunological abnormalities in a family.  J Clin Pathol. 1971;  24 732-735
  • 19 Boling E P, Wen J, Reveille J D. et al . Primary Sjögren’s syndrome and autoimmune hemolytic anemia in sisters. A family study.  Am J Med. 1983;  74 1066-1071
  • 20 Sabio J M, Milla E, Jimenez-Alonso J. A multicase family with primary Sjögren’s syndrome.  J Rheumatol. 2001;  28 1932-1934
  • 21 Scofield R H, Kurien B T, Reichlin M. Immunologically restricted and inhibitory anti-Ro/SSA in monozygotic twins.  Lupus. 1997;  6 395-398
  • 22 Besana C, Salmaggi C, Pellegrino C. et al . Chronic bilateral dacryo-adenitis in identical twins: a possible incomplete form of Sjögren’s syndrome.  Eur J Pediatr. 1991;  150 652-655
  • 23 Koga T, Ebata H, Tanigawa K. et al . Identical twins of Sjorgren’s syndrome with renal tubular acidosis (author’s transl).  Nippon Naika Gakkai Zasshi. 1980;  69 1458-1462
  • 24 Bolstad A I, Haga H J, Wassmuth R. et al . Monozygotic twins with primary Sjögren’s syndrome.  J Rheumatol. 2000;  27 2264-2266
  • 25 Becker K G, Simon R M, Bailey-Wilson J E. et al . Clustering of non-major histocompatibility complex susceptibility candidate loci in human autoimmune diseases.  Proc Natl Acad Sci USA. 1998;  95 9979-9984
  • 26 Tanaka A, Igarashi M, Kakinuma M. et al . The occurrence of various collagen diseases in one family: a sister with ISSc, PBC, APS, and SS and a brother with systemic lupus erythematosus.  J Dermatol. 2001;  28 547-553
  • 27 Reveille J D, Arnett F C. The immunogenetics of Sjögren’s syndrome.  Rheum Dis Clin North Am. 1992;  18 539-550
  • 28 Nepom G T. MHC and autoimmune diseases.  Immunol Ser. 1993;  59 143-164
  • 29 Merriman T R, Todd J A. Genetics of autoimmune disease.  Curr Opin Immunol. 1995;  7 786-792
  • 30 Tomlinson I P, Bodmer W F. The HLA system and the analysis of multifactorial genetic disease.  Trends Genet. 1995;  11 493-498
  • 31 Reveille J D. The molecular genetics of systemic lupus erythematosus and Sjögren’s syndrome.  Curr Opin Rheumatol. 1992;  4 644-656
  • 32 Kang H I, Fei H M, Saito I. et al . Comparison of HLA class II genes in Caucasoid, Chinese, and Japanese patients with primary Sjögren’s syndrome.  J Immunol. 1993;  150 3615-3623
  • 33 Loiseau P, Lepage V, Djelal F. et al . HLA class I and class II are both associated with the genetic predisposition to primary Sjögren syndrome.  Hum Immunol. 2001;  62 725-731
  • 34 Manthorpe R, Morling N, Platz P. et al . HLA-D antigen frequencies in Sjögren’s syndrome. Differences between the primary and secondary form.  Scand J Rheumatol. 1981;  10 124-128
  • 35 Papasteriades C A, Skopouli F N, Drosos A A. et al . HLA-alloantigen associations in Greek patients with Sjögren’s syndrome.  J Autoimmun. 1988;  1 85-90
  • 36 Harley J B, Reichlin M, Arnett F C. et al . Gene interaction at HLA-DQ enhances autoantibody production in primary Sjögren’s syndrome.  Science. 1986;  232 1145-1147
  • 37 Kerttula T O, Collin P, Polvi A. et al . Distinct immunologic features of Finnish Sjögren’s syndrome patients with HLA alleles DRB1* DQA1*0501, and DQB1*0201. Alterations in circulating T cell receptor gamma/delta subsets.  Arthritis Rheum. 1995;  39 1733-1739
  • 38 Rischmueller M, Lester S, Chen Z. et al . HLA class II phenotype controls diversification of the autoantibody response in primary Sjögren’s syndrome (pSS).  Clin Exp Immunol. 1998;  111 365-371
  • 39 Bolstad A I, Wassmuth R, Haga H J. et al . HLA markers and clinical characteristics in Caucasians with primary Sjögren’s syndrome.  J Rheumatol. 2001;  28 1554-1562
  • 40 Nakken B, Jonsson R, Brokstad K A. et al . Associations of MHC class II alleles in Norwegian primary Sjögren’s syndrome patients: implications for development of autoantibodies to the Ro52 autoantigen.  Scand J Immunol. 2001;  54 428-433
  • 41 Fei H M, Kang H, Scharf S. et al . Specific HLA-DQA and HLA-DRB1 alleles confer susceptibility to Sjögren’s syndrome and autoantibody production.  J Clin Lab Anal. 1991;  5 382-391
  • 42 Arnett F C, Hamilton R G, Reveille J D. et al . Genetic studies of Ro (SS-A) and La (SS-B) autoantibodies in families with systemic lupus erythematosus and primary Sjögren’s syndrome.  Arthritis Rheum. 1989;  32 413-419
  • 43 Hamilton R G, Harley J B, Bias W B. et al . Two Ro (SS-A) autoantibody responses in systemic lupus erythematosus. Correlation of HLA-DR/DQ specificities with quantitative expression of Ro (SS-A) autoantibody.  Arthritis Rheum. 1988;  31 496-505
  • 44 Wilson W A, Scopelitis E, Michalski J P. Association of HLA-DR7 with both antibody to SSA(Ro) and disease susceptibility in blacks with systemic lupus erythematosus.  J Rheumatol. 1984;  11 653-657
  • 45 Miyagawa S, Shinohara K, Nakajima M. et al . Polymorphisms of HLA class II genes and autoimmune responses to Ro/SS-ALa/SS-B among Japanese subjects.  Arthritis Rheum. 1998;  41 927-934
  • 46 Mullauer L, Gruber P, Sebinger D. et al . Mutations in apoptosis genes: a pathogenetic factor for human disease.  Mutat Res. 2001;  488 211-231
  • 47 Bolstad A I, Jonsson R. The role of apoptosis in Sjögren’s syndrome.  Ann Med Interne. 1998;  149 25-29
  • 48 Manganelli P, Quaini F, Andreoli A M. et al . Quantitative analysis of apoptosis and bcl-2 in Sjögren’s syndrome.  J Rheumatol. 1997;  24 1552-1557
  • 49 Matsumura R, Umemiya K, Kagami M. et al . Glandular and extraglandular expression of the Fas-Fas ligand and apoptosis in patients with Sjögren’s syndrome.  Clin Exp Rheumatol. 1998;  16 561-568
  • 50 Skarstein K, Nerland A H, Eidsheim M. et al . Lymphoid cell accumulation in salivary glands of autoimmune MRL mice can be due to impaired apoptosis.  Scand J Immunol. 1997;  46 373-378
  • 51 Bolstad A I, Wargelius A, Nakken B. et al . Fas and Fas ligand gene polymorphisms in primary Sjögren’s syndrome.  J Rheumatol. 2000;  27 2397-2405
  • 52 Kassan S S, Thomas T L, Moutsopoulos H M. et al . Increased risk of lymphoma in sicca syndrome.  Ann Intern Med. 1978;  89 888-892
  • 53 Kaschner S, Hansen A, Jacobi A. et al . Immunoglobulin V lambda light chain gene usage in patients with Sjögren’s syndrome.  Arthritis Rheum. 2001;  44 2620-2632
  • 54 Sullivan D A, Wickham L A, Rocha E M. et al . Androgens and dry eye in Sjögren’s syndrome.  Ann N Y Acad Sci. 1999;  876 312-324
  • 55 Sullivan D A, Sullivan B D, Evans J E. et al . Androgen deficiency, meibomian gland dysfunction, and evaporative dry eye.  Ann N Y Acad Sci. 2002;  966 211-222
  • 56 Johnson E O, Moutsopoulos H M. Neuroendocrine manifestations in Sjögren’s syndrome.  Ann N Y Acad Sci. 2000;  917 797-808
  • 57 James J A, Harley J B, Scofield R H. Role of viruses in systemic lupus erythematosus and Sjögren’s syndrome.  Curr Opin Rheumatol. 2001;  13 370-376
  • 58 Griffiths D J, Venables P J, Weiss R A. et al . A novel exogenous retrovirus sequence in humans.  Virology. 1997;  71 2866-2872
  • 59 Ramos-Casals M, Garcia-Carrasco M, Cervera R. et al . Hepatitis C virus infection mimicking primary Sjögren’s syndrome. A clinical and immunologic description of 35 cases.  Medicine (Baltimore). 2001;  80 1-8
  • 60 Kordossis T, Paikos S, Aroni K. et al . Prevalence of Sjögren’s likesyndrome in a cohort of HIV-1 positive patients: descriptive pathology and immunopathology.  Br J Rheumatol. 1998;  37 691-695
  • 61 De Re V, De Vita S, Battistella V. et al . Absence of human parvovirus B19 DNA in myoepithelial sialoadenitis of primary Sjögren’s syndrome.  Ann Rheum Dis. 2002;  61 855-856
  • 62 Triantafyllopoulou A, Tapinos N, Moutsopoulos H M. Evidence for coxsackievirus infection in primary Sjögren’s syndrome.  Arthritis Rheum. 2004;  50 2897-2902
  • 63 Xanthou G, Tapinos N I, Polihronis M. et al . CD4 cytotoxic and dendritic cells in the immunopathologic lesion of Sjögren’s syndrome.  Clin Exp Immunol. 1999;  118 154-160
  • 64 Stott D I, Hiepe F, Hummel M. et al . Antigen-driven clonal proliferation of B cells within the target tissue of an autoimmune disease. The salivary glands of patients with Sjögren’s syndrome.  J Clin Invest. 1998;  1102 938-946
  • 65 Bodeutsch C, deWilde P C, Kater L. et al . Monotypic plasma cells in labial salivary glands of patients with Sjögren’s syndrome: prognosticator for systemic lymphoproliferative disease.  J Clin Pathol. 1993;  46 123-128
  • 66 Schröder A E, Greiner A, Seyfert C. et al . Differentiation of B cells in the nonlymphoid tissue of the synovial membrane of patients with rheumatoid arthritis.  Proc Natl Acad Sci USA. 1996;  93 221-225
  • 67 Meffre E, Davis E, Schiff C. et al . Circulating human B cells that express surrogate light chains and edited receptors.  Nat Immunol. 2000;  1 207-213
  • 68 Amft N, Bowman S J. Chemokines and cell trafficking in Sjögren’s syndrome.  Scand J Immunol. 2001;  54 62-69
  • 69 Amft N, Curnow S J, Scheel-Toellner D. et al . Ectopic expression of the B cell-attracting chemokine BCA-1 (CXCL13) on endothelial cells and within lymphoid follicles contributes to the establishment of germinal center-like structures in Sjögren’s syndrome.  Arthritis Rheum. 2001;  44 2633-2641
  • 70 Shi K, Hayashida K, Kaneko M. et al . Lymphoid chemokine B cell-attracting chemokine-1 (CXCL13) is expressed in germinal center of ectopic lymphoid follicles within the synovium of chronic arthritis patients.  J Immunol. 2001;  166 650-655
  • 71 Potter K N, Mockridge C I, Rahman A. et al . Disturbancies in peripheral blood B cell subpopulations in autoimmune patients.  Lupus. 2002;  11 872-877
  • 72 Bohnhorst J, Bjorgan M B, Thoen J E. et al . Bm1-bm5 classification of peripheral blood B cells reveals circulating germinal center founder cells in healthy individuals and disturbance in the B cell subpopulations in patients with primary Sjögren’s syndrome.  J Immunol. 2001;  167 3610-3618
  • 73 Hansen A, Odendahl M, Reiter K. et al . Evidence for the migration and accumulation of memory B cells in the salivary glands of patients with Sjögren’s syndrome.  Arthritis Rheum. 2002;  46 2160-2171
  • 74 Halse A, Tengner P, Wahren-Herlenius M. et al . Increased frequency of cells secreting interleukin-6 and interleukin-10 in peripheral blood of patients with primary Sjögrens syndrome.  Scand J Immunol. 1999;  49 533-538
  • 75 Taga K, Cherney B, Tosato G. IL-10 inhibits apoptotic cell death in human T cells starved of IL-2.  Int Immunol. 1993;  5 1599-1608
  • 76 Ngo V N, Korner H, Gunn M D. et al . Lymphotoxin-aa and tumor necrosis factor are required for stromal cell expression of homing chemokines in B and T cell areas of the spleen.  J Exp Med. 1999;  189 403-412
  • 77 Gunn M D, Kyuwa S, Tam C. et al . Mice lacking expression of secondary lymphoid organ chemokine have defects in lymphocyte homing and dendritic cell localization.  J Exp Med. 1999;  189 451-460
  • 78 Groom J, Kalled S L, Cutler A H. et al . Association of BAFF/BLyS overexpression and altered B cell differentiation with Sjögren’s syndrome.  J Clin Invest. 2002;  109 59-68
  • 79 Lavie F, Miceli-Richard C, Quillard J. et al . Expression of BAFF (BLyS) in T cells infiltrating labial salivary glands from patients with Sjögren’s syndrome.  J Pathol. 2004;  202 496-502
  • 80 Amft N, Curnow S J, Scheel-Toellner D. et al . Ectopic expression of the B cell-attracting chemokine BCA-1 (CXCL13) on endothelial cells and within lymphoid follicles contributes to the establishment of germinal center-like structures in Sjögren’s syndrome.  Arthritis Rheum. 2001;  44 2633-2641
  • 81 DiGiuseppe J A, Corio R L, Westra W H. Lymphoid infiltrates of the salivary glands: pathology, biology, and clinical significance.  Curr Opin Oncol. 1996;  8 232-237
  • 82 De Vita S, Boiocchi M, Sorrentino D. et al . Characterization of prelymphomatous stages of B cell lymphoproliferation in Sjögren’s syndrome.  Arthritis Rheum. 1997;  40 318-331
  • 83 Martin T, Weber J C, Levallois H. et al . Salivary gland lymphomas in patients with Sjögren’s syndrome may frequently develop from rheumatoid factor B cells.  Arthritis Rheum. 2000;  43 908-916
  • 84 Chen P P, Olsen N J, Yang P M. et al . From human autoantibodies to the fetal antibody repertoire to B cell malignancy: it’s a small world after all.  Intern Rev Immunol. 1990;  5 239-251
  • 85 Mackay I R, Rose N R. Autoimmunity and lymphoma: tribulations of B cells.  Nat Immunol. 2001;  2 793-795
  • 86 Bahler D W, Swerdlow S H. Clonal salivary gland infiltrates associated with myoepithelial sialadenitis (Sjögren’s syndrome) begin as nonmalignant antigen-selected expansion.  Blood. 1998;  91 1864-1872
  • 87 Bahler D W, Miklos J A, Swerdlow S H. Ongoing Ig gene hypermutation in salivary gland mucosa-associated lymphoid tissue type lymphomas.  Blood. 1997;  89 3335-3344
  • 88 Miklos J A, Swerdlow S H, Bahler D W. Salivary gland mucosa-associated lymphoid tissue lymphoma immunoglobulin VH genes show frequent use of V1 - 69 with distinctive CDR3 features.  Blood. 2000;  95 3878-3884
  • 89 van Oers M H, Pals S T, Evers L M. et al . Expression and release of CD27 in human B-cell malignancies.  Blood. 1993;  82 3430-3436
  • 90 Lens S M, Tesselaar K, van Oers M H. et al . Control of lymphocyte function through CD27-CD70 interactions.  Semin Immunol. 1998;  10 491-499
  • 91 Setty Y N, Pittman C B, Mahale A S. et al . Sicca symptoms and anti-SSA/Ro antibodies in mixed connective tissue disease.  J Rheumatol. 2002;  29 487-489
  • 92 Kubo M, Ihn H, Asano Y. et al . Prevalence of 52-kd and 60-kd Ro/SS-A autoantibodies in Japanese patients with polymyositis/dermatomyositis.  J Am Acad Dermatol. 2002;  47 148-151
  • 93 Dorner T, Hucko M, Mayer W J. et al . Enhanced membrane expression of the 52 kDa Ro (SS-A) and La (SS-B) antigens by human keratinocytes induced by TNF alpha.  Ann Rheum Dis. 1995;  54 904-909
  • 94 Casciola-Rosen L A, Anhalt G, Rosen A. Autoantigens targeted in systemic lupus erythematosus are clustered in two populations of surface structures on apoptotic keratinocytes.  J Exp Med. 1994;  179 1317-1330
  • 95 Egerer K, Kuckelhorn U, Rudolph P E. et al . Circulating proteasomes are markers of cell damage and immunologic activity in autoimmune diseases.  J Rheumatol. 2002;  29 2045-2052
  • 96 Feist E, Kuckelhorn U, Dorner T. et al . Autoantibodies in primary Sjögren’s syndrome are directed against proteasomal subunits af the alpha and beta type.  Arthritis Rheum. 1998;  42 697-702
  • 97 Fox R I. Clinical features, pathogenesis, and treatment of Sjögren’s syndrome.  Curr Opin Rheumatol. 1996;  8 438-445
  • 98 Martin S J, O’Brien G A, Nishioka W K. et al . Proteolysis of fodrin (non-erythroid spectrin) during apoptosis.  J Biol Chem. 1995;  270 6425-6428
  • 99 Yanagi K, Ishimaru N, Haneji N. et al . Anti 120-kDa alpha -fodrin immune response with Th1-cytokine profile in the NOD mouse model of Sjögren’s syndrome.  Eur J Immunol. 1998;  28 3336-3345
  • 100 Watanabe T, Tsuchida T, Kanda N. et al . Anti-alpha-fodrin antibodies in Sjögren’s syndrome and lupus erythematosus.  Arch Dermatol. 1999;  135 535-539
  • 101 Ulbricht K U, Schmidt R E, Witte T. Antibodies to alpha fodrin in Sjögren’s syndrome.  Autoimmunity Reviews. 2003;  2 109-113
  • 102 Witte T, Matthias T, Oppermann M. et al . IgA and IgG autoantibodies against alpha -fodrin as marker for Sjögren’s syndrome.  J Rheumatol. 2002;  27 2617-2620
  • 103 Bacman S, Perez L eiros C, Sterin-Borda L. et al . Autoantibodies against lacrimal gland M3 muscarinic acetylcholine receptors in patients with primary Sjögren’s syndrome.  Invest Ophthalmol Vis Sci. 1998;  39 151-156
  • 104 Li J, Ha Y M, Ku N Y. et al . Inhibitory effects of autoantibodies on the muscarinic receptors in Sjögren’s syndrome.  Lab Invest. 2004;  84 1430-1438
  • 105 Gordon T P, Bolstad A I, Rischmueller M. et al . Autoantibodies in primary Sjögren’s syndrome: new insight into mechanism of autoantibody diversification and disease pathogenesis.  Autoimmunity. 2001;  34 123-132
  • 106 Main C, Blennerhasset P, Collins S M. Human recombinant interleukin 1 beta suppresses acetyl-choline release from rat myenteric plexus.  Gastroenterology. 1993;  104 1648-1654
  • 107 Liu X B, Masago R, Kong L. et al . G protein signaling abnormalities mediated by CD95 in salivary epithelial cells.  Cell Death Differ. 2000;  7 1119-1126
  • 108 Konttinen Y T, Halinen S, Hanemaaijer R. et al . Matrix metalloproteinase (MMP)- 9 type IV collagenase/gelatinase implicated in the pathogenesis of Sjögren’s syndrome.  Matrix Biol. 1998;  17 335-347
  • 109 Steinfeld S, Cogan E, King L S. et al . Abnormal distribution of aquasporin-5 water channel protein in salivary glands from Sjögren’s syndrome.  Lab Invest. 2001;  81 141-148

Claudio Vitali, MD

Dept. of Internal Medicine and Rheumatology, ‘Villamarina’ Hospital

Via Forlanini

57025 Piombino

Italy

Email: hyqprgbv@tin.it

    >