Rofo 2005; 177(6): 788-795
DOI: 10.1055/s-2005-858151
Übersicht

© Georg Thieme Verlag KG Stuttgart · New York

MRT zur Problemlösung beim Nachweis des Prostatakarzinoms

MRI for Troubleshooting Detection of Prostate CancerD. Beyersdorff1 , B. Hamm1
  • 1Universitätsmedizin Berlin, Charité Campus Mitte
Further Information

Publication History

Publication Date:
19 May 2005 (online)

Zusammenfassung

Das Prostatakarzinom ist der häufigste Tumor des Mannes. Zum Nachweis wird ab dem 50. Lebensjahr die jährliche digitale rektale Untersuchung und die Prostata-spezifische-Antigen-(PSA-)Bestimmung im Serum empfohlen. Bei einem großen Teil der Patienten findet sich jedoch trotz eines auf über 4 ng/ml erhöhten PSA-Wertes kein Prostatakarzinom in der durch den transrektalen Ultraschall (TRUS) gesteuerten Prostatabiopsie. Die MRT ist in der Lage, im T2-gewichteten Bild die Prostata mit ihrer zonalen Anatomie sowie tumorsuspekte signalarme Areale innerhalb der signalreichen peripheren Zone darzustellen. Bei Patienten mit erhöhtem PSA-Wert und negativer Stanzbiopsie erreicht die MRT für den Nachweis von Prostatakarzinomen eine höhere Sensitivität als die digitale rektale Untersuchung und der transrektale Ultraschall. Die Spezifität ist jedoch gering, da andere Befunde, wie Prostatische Intraepitheliale Neoplasie (PIN), Prostatitis, Narben oder Hämorrhagien ähnliche Veränderungen bewirken. Durch den Einsatz zusätzlicher Techniken wie der MR-Spektroskopie und der kontrastmittelunterstützten dynamischen MRT lässt sich die Sensitivität, jedoch insbesondere die Spezifität der Tumordetektion verbessern. Durch neu entwickelte Biopsievorrichtungen ist eine direkte Biopsie eines im MRT suspekten Areals möglich.

Abstract

Prostate cancer is the most common malignancy in males. Men aged 50 and older are recommended to undergo an annual digital rectal examination (DRE) and determination of prostate-specific antigen (PSA) in serum for early detection. However, prostate biopsies guided by transrectal ultrasound (TRUS) come up negative for cancer in many patients despite having PSA levels above 4ng/ml. T2-weighted Magnetic Resonance Imaging (MRI) is able to represent the prostate including the surrounding anatomy and depict suspicious areas of low intensity within a high-intensity peripheral zone. MRI has a higher sensitivity for detecting prostate carcinomas than DRE and TRUS in patients having an elevated PSA value and a negative core biopsy. However, its specificity is poor since other abnormalities such as prostatic intraepilthelial neoplasia (PIN), prostatitis, scars, or haemmorrhage have a similar MRI appearance. The use of additional techniques such as MR spectroscopy and contrast-enhanced dynamic MRI improves sensitivity, but in particular it improves the specificity of tumor detection. Newly developed biopsy devices enable the performance of targeted biopsies in areas that appear suspicious in the MRI.

Literatur

  • 1 Deutschland SB . Sterbefälle nach den 10 häufigsten Todesursachen (männlich) für das Jahr 2002. Webseite: www.destatis.de/basis/d/gesu/gesutab20.php#Nicht 2004. 
  • 2 Sakr W A, Haas G P, Cassin B F. et al . The frequency of carcinoma and intraepithelial neoplasia of the prostate in young male patients.  J Urol. 1993;  150 379-385
  • 3 Waterbor J W, Bueschen A J. Prostate cancer screening (United States).  Cancer Causes Control. 1995;  6 267-274
  • 4 McNeal J E, Bostwick D G, Kindrachuk R A. et al . Patterns of progression in prostate cancer.  Lancet. 1986;  1 60-63
  • 5 Miller G J, Cygan J M. Morphology of prostate cancer: the effects of multifocality on histological grade, tumor volume and capsule penetration.  J Urol. 1994;  152 1709-1713
  • 6 Gleason D F, Mellinger G T. Prediction of prognosis for prostatic adenocarcinoma by combined histological grading and clinical staging.  J Urol. 1974;  111 58-64
  • 7 Sgrignoli A R, Walsh P C, Steinberg G D. et al . Prognostic factors in men with stage D1 prostate cancer: identification of patients less likely to have prolonged survival after radical prostatectomy.  J Urol. 1994;  152 1077-1081
  • 8 Berner A, Waere H, Nesland J M. et al . DNA ploidy, serum prostate specific antigen, histological grade and immunohistochemistry as predictive parameters of lymph node metastases in T1-T3/M0 prostatic adenocarcinoma.  Br J Urol. 1995;  75 26-32
  • 9 Folkman J, Watson K, Ingber D. et al . Induction of angiogenesis during the transition from hyperplasia to neoplasia.  Nature. 1989;  339 58-61
  • 10 Siegal J A, Yu E, Brawer M K. Topography of neovascularity in human prostate carcinoma.  Cancer. 1995;  75 2545-2551
  • 11 Hammerer P, Lein M. Stellenwert der PSA-Bestimmung zur Früherkennung des Prostatakarzinoms.  Deutsches Ärzteblatt. 2004;  1001 1581-1582
  • 12 Dennis L K, Resnick M I. Analysis of recent trends in prostate cancer incidence and mortality.  Prostate. 2000;  42 247-252
  • 13 Catalona W J, Smith D S, Ratliff T L. et al . Measurement of prostate-specific antigen in serum as a screening test for prostate cancer.  N Engl J Med. 1991;  324 1156-1161
  • 14 Urologie A-L . PSA-Bestimmung in der Prostatakarzinomdiagnostik.  , www.uni-duesseldorf.de/WWW/AWMF/ll/ll_list.htm 2003
  • 15 Antenor J A, Han M, Roehl K A. et al . Relationship between initial prostate specific antigen level and subsequent prostate cancer detection in a longitudinal screening study.  J Urol. 2004;  172 90-93
  • 16 Roehl K A, Antenor J A, Catalona W J. Serial biopsy results in prostate cancer screening study.  J Urol. 2002;  167 2435-2439
  • 17 Mueller-Lisse U G, Mueller-Lisse U L, Haller S. et al . Likelihood of prostate cancer based on prostate-specific antigen density by MRI: retrospective analysis.  J Comput Assist Tomogr. 2002;  26 432-437
  • 18 Jung K, Elgeti U, Lein M. et al . Ratio of free or complexed prostate-specific antigen (PSA) to total PSA: which ratio improves differentiation between benign prostatic hyperplasia and prostate cancer?.  Clin-Chem. 2000;  46 55-62
  • 19 Luboldt H J, Rübben H. Früherkennung des Prostatakarzinoms.  Deutsches Ärzteblatt. 2004;  101 1443-1445
  • 20 Ellis W J, Brawer M K. Repeat prostate needle biopsy: who needs it?.  J Urol. 1995;  153 1496-1498
  • 21 Presti J C Jr. Prostate biopsy: how many cores are enough?.  Urol Oncol. 2003;  21 135-140
  • 22 Philip J, Ragavan N, Desouza J. et al . Effect of peripheral biopsies in maximising early prostate cancer detection in 8-, 10- or 12-core biopsy regimens.  BJU Int. 2004;  93 1218-1220
  • 23 Keetch D W, Catalona W J, Smith D S. Serial prostatic biopsies in men with persistently elevated serum prostate specific antigen values.  J Urol. 1994;  151 1571-1574
  • 24 Nicolas V, Beese M, Keulers A. et al . MR-Tomographie des Prostatakarzinoms - Vergleich konventionelle und endorektale MRT.  Fortschr Röntgenstr. 1994;  161 319-326
  • 25 Rifkin M D, Zerhouni E A, Gatsonis C A. et al . Comparison of magnetic resonance imaging and ultrasonography in staging early prostate cancer. Results of a multi-institutional cooperative trial.  N Engl J Med. 1990;  323 621-626
  • 26 Tempany C M, Rahmouni A D, Epstein J I. et al . Invasion of the neurovascular bundle by prostate cancer: evaluation with MR imaging.  Radiology. 1991;  181 107-112
  • 27 Hricak H, White S, Vigneron D. et al . Carcinoma of the prostate gland: MR imaging with pelvic phased-array coils versus integrated endorectal - pelvic phased-array coils.  Radiology. 1994;  193 703-709
  • 28 Pegios W, Bentas W, Wittmann L. et al . Kernspintomographisches Staging des Prostatakarzinoms mittels kombinierter Endorektal-Body-Phased-Array-Spule und histopathologische Korrelation.  Fortschr Röntgenstr. 2003;  175 1660-1666
  • 29 Beyersdorff D, Darsow U, Stephan C. et al . MRT des Prostatakarzinoms mit drei verschiedenen Spulensystemen: Abbildungsqualität des Tumors und Staging.  Fortschr Röntgenstr. 2003;  175 799-805
  • 30 Quinn S F, Franzini D A, Demlow T A. et al . MR imaging of prostate cancer with an endorectal surface coil technique: correlation with whole-mount specimens.  Radiology. 1994;  190 323-327
  • 31 Yu K K, Hricak H, Alagappan R. et al . Detection of extracapsular extension of prostate carcinoma with endorectal and phased-array coil MR imaging: multivariate feature analysis.  Radiology. 1997;  202 697-702
  • 32 Ikonen S, Karkkainen P, Kivisaari L. et al . Magnetic resonance imaging of clinically localized prostatic cancer.  J Urol. 1998;  159 915-919
  • 33 Ellis J H, Tempany C, Sarin M S. et al . MR imaging and sonography of early prostatic cancer: pathologic and imaging features that influence identification and diagnosis.  AJR Am J Roentgenol. 1994;  162 865-872
  • 34 Getty D J, Seltzer S E, Tempany C M. et al . Prostate cancer: relative effects of demographic, clinical, histologic, and MR imaging variables on the accuracy of staging.  Radiology. 1997;  204 471-479
  • 35 Dhingsa R, Qayyum A, Coakley F V. et al . Prostate cancer localization with endorectal MR imaging and MR spectroscopic imaging: effect of clinical data on reader accuracy.  Radiology. 2004;  230 215-220
  • 36 Mullerad M, Hricak H, Wang L. et al . Prostate cancer: detection of extracapsular extension by genitourinary and general body radiologists at MR imaging.  Radiology. 2004;  232 140-146
  • 37 Ikonen S, Kivisaari L, Tervahartiala P. et al . Prostatic MR imaging. Accuracy in differentiating cancer from other prostatic disorders.  Acta Radiol. 2001;  42 348-354
  • 38 Perrotti M, Han K R, Epstein R E. et al . Prospective evaluation of endorectal magnetic resonance imaging to detect tumor foci in men with prior negative prostastic biopsy: a pilot study.  J Urol. 1999;  162 1314-1317
  • 39 Beyersdorff D, Taupitz M, Winkelmann B. et al . Patients with a history of elevated prostate-specific antigen levels and negative transrectal US-guided quadrant or sextant biopsy results: value of MR imaging.  Radiology. 2002;  224 701-706
  • 40 Gerlowski L E, Jain R K. Microvascular permeability of normal and neoplastic tissues.  Microvasc Res. 1986;  31 288-305
  • 41 Daldrup H, Shames D M, Wendland M. et al . Correlation of dynamic contrast-enhanced MR imaging with histologic tumor grade: comparison of macromolecular and small-molecular contrast media.  AJR Am J Roentgenol. 1998;  171 941-949
  • 42 Vartanian R K, Weidner N. Endothelial cell proliferation in prostatic carcinoma and prostatic hyperplasia: correlation with Gleason’s score, microvessel density, and epithelial cell proliferation.  Lab Invest. 1995;  73 844-850
  • 43 Weidner N, Carroll P R, Flax J. et al . Tumor angiogenesis correlates with metastasis in invasive prostate carcinoma.  Am J Pathol. 1993;  143 401-409
  • 44 Wakui S, Furusato M, Itoh T. et al . Tumour angiogenesis in prostatic carcinoma with and without bone marrow metastasis: a morphometric study.  J Pathol. 1992;  168 257-262
  • 45 Brix G, Semmler W, Port R. et al . Pharmacokinetic parameters in CNS Gd-DTPA enhanced MR imaging.  J Comput Assist Tomogr. 1991;  15 621-628
  • 46 Hawighorst H, Schaeffer U, Knapstein P G. et al . Erfassung angiogeneseabhängiger Parameter mittels funktioneller MRT: Korrelation mit der Histomorphologie sowie Abklärung der klinischen Relevanz als Prognosefaktor am Beispiel des Zervixkarzinomes.  Fortschr Röntgenstr. 1998;  169 499-504
  • 47 Rosen B R, Belliveau J W, Vevea J M. et al . Perfusion imaging with NMR contrast agents.  Magn-Reson-Med. 1990;  14 249-265
  • 48 Huch B öni RA, Boner J A, Lutolf U M. et al . Contrast-enhanced endorectal coil MRI in local staging of prostate carcinoma.  J-Comput-Assist-Tomogr. 1995;  19 232-237
  • 49 Brown G, Macvicar D A, Ayton V. et al . The role of intravenous contrast enhancement in magnetic resonance imaging of prostatic carcinoma.  Clin-Radiol. 1995;  50 601-606
  • 50 Gossmann A, Okuhata Y, Shames D M. et al . Prostate cancer tumor grade differentiation with dynamic contrast-enhanced MR imaging in the rat: comparison of macromolecular and small-molecular contrast media - preliminary experience.  Radiology. 1999;  213 265-272
  • 51 Kiessling F, Huber P E, Grobholz R. et al . Dynamic magnetic resonance tomography and proton magnetic resonance spectroscopy of prostate cancers in rats treated by radiotherapy.  Invest Radiol. 2004;  39 34-44
  • 52 Jager G J, Ruijter E T, van de Kaa C A. et al . Dynamic TurboFLASH subtraction technique for contrast-enhanced MR imaging of the prostate: correlation with histopathologic results.  Radiology. 1997;  203 645-652
  • 53 Padhani A R, MacVicar A D, Gapinski C J. et al . Effects of androgen deprivation on prostatic morphology and vascular permeability evaluated with mr imaging.  Radiology. 2001;  218 365-374
  • 54 Engelbrecht M R, Huisman H J, Laheij R J. et al . Discrimination of prostate cancer from normal peripheral zone and central gland tissue by using dynamic contrast-enhanced MR imaging.  Radiology. 2003;  229 248-254
  • 55 Kurhanewicz J, Vigneron D B, Nelson S J. et al . Citrate as an in vivo marker to discriminate prostate cancer from benign prostatic hyperplasia and normal prostate peripheral zone: detection via localized proton spectroscopy.  Urology. 1995;  45 459-466
  • 56 Scheidler J, Hricak H, Vigneron D B. et al . Prostate cancer: localization with three-dimensional proton MR spectroscopic imaging - clinicopathologic study.  Radiology. 1999;  213 473-480
  • 57 Kurhanewicz J, Vigneron D B, Hricak H. et al . Three-dimensional H-1 MR spectroscopic imaging of the in situ human prostate with high (0.24 - 0.7-cm3) spatial resolution.  Radiology. 1996;  198 795-805
  • 58 Coakley F V, Kurhanewicz J, Lu Y. et al . Prostate cancer tumor volume: measurement with endorectal MR and MR spectroscopic imaging.  Radiology. 2002;  223 91-97
  • 59 Mueller-Lisse U G, Vigneron D B, Hricak H. et al . Localized prostate cancer: effect of hormone deprivation therapy measured by using combined three-dimensional 1H MR spectroscopy and MR imaging: clinicopathologic case-controlled study.  Radiology. 2001;  221 380-390
  • 60 Kurhanewicz J, Swanson M G, Nelson S J. et al . Combined magnetic resonance imaging and spectroscopic imaging approach to molecular imaging of prostate cancer.  J Magn Reson Imaging. 2002;  16 451-463
  • 61 Stanka M, Eltze E, Semjonow A. et al . Spektroskopische Bildgebung (1H-MR-CSI) der Prostata: Sequenzoptimierung und Korrelation mit histopathologischen Untersuchungen.  Fortschr Röntgenstr. 2000;  172 623-629
  • 62 Meng M V, Shinohara K, Grossfeld G D. Significance of high-grade prostatic intraepithelial neoplasia on prostate biopsy.  Urol Oncol. 2003;  21 145-151
  • 63 Bostwick D G. Gleason grading of prostatic needle biopsies - correlation with grade in 316 matched prostatectomies.  Am J Surg Pathol. 1994;  18 796-803
  • 64 Wefer A E, Hricak H, Vigneron D B. et al . Sextant localization of prostate cancer: comparison of sextant biopsy, magnetic resonance imaging and magnetic resonance spectroscopic imaging with step section histology.  J Urol. 2000;  164 400-404
  • 65 D’Amico A V, Tempany C M, Cormack R. et al . Transperineal magnetic resonance image guided prostate biopsy.  J Urol. 2000;  164 385-387
  • 66 D’Amico A, Cormack R, Kumar S. et al . Real-time magnetic resonance imaging-guided brachytherapy in the treatment of selected patients with clinically localized prostate cancer.  J Endourol. 2000;  14 367-370
  • 67 Cormack R A, D’Amico A V, Hata N. et al . Feasibility of transperineal prostate biopsy under interventional magnetic resonance guidance.  Urology. 2000;  56 663-664
  • 68 Beyersdorff D, Winkel A, Hamm B. et al . MRI-guided Prostate Biopsy in a Closed MR Scanner at 1.5 Tesla: Initial Results.  Radiology. 2004;  (im Druck)
  • 69 Susil R C, Krieger A, Derbyshire J A. et al . System for MR image-guided prostate interventions: canine study.  Radiology. 2003;  228 886-894
  • 70 Kaplan I, Oldenburg N E, Meskell P. et al . Real time MRI-ultrasound image guided stereotactic prostate biopsy.  Magn Reson Imaging. 2002;  20 295-299
  • 71 White S, Hricak H, Forstner R. et al . Prostate cancer: effect of postbiopsy hemorrhage on interpretation of MR images.  Radiology. 1995;  195 385-390

Dr. Dirk Beyersdorff

Charité Campus Mitte

Schumannstr. 20/21

10117 Berlin

Email: dirk.beyersdorff@charite.de

    >