Z Gastroenterol 2006; 44(1): 67-76
DOI: 10.1055/s-2005-858987
Übersicht

© Karl Demeter Verlag im Georg Thieme Verlag KG Stuttgart · New York

Oxygen: Modulator of Physiological and Pathophysiological Processes in the Liver

Sauerstoff: Modulator von physiologischen und pathophysiologischen Prozessen in der LeberT. Kietzmann1 , E. Y. Dimova1 , D. Flügel1 , J.-G Scharf2
  • 1Department of Biochemistry, Faculty of Chemistry, University of Kaiserslautern
  • 2Medizinische Klinik und Poliklinik, Georg-August-Universität, Göttingen
Further Information

Publication History

Publication Date:
05 January 2006 (online)

Zusammenfassung

Molekularer Sauerstoff hat bedeutende Funktionen als Substrat bei einer Reihe biochemischer Reaktionen und als Signalmolekül bei der Modulation der Genexpression. Dies ist besonders markant in der Leber, wo der physiologisch vorhandene Sauerstoffgradient bedeutend für die metabolischen Zonierung ist. Neben der Sauerstoffsignalkette sind auch die Nährstoff (Glukose)-abhängigen Signalwege für die Zonierung bedeutend und so können Wechselwirkungen zwischen Sauerstoffsignalweg und Glukosesignalweg mit für die dynamische Zonierung in der Leber verantwortlich sein. Unter pathologischen Bedingungen kann eine Unterversorgung des Lebergewebes mit Sauerstoff (Hypoxie) ein entscheidender Faktor für die Progression von Lebererkrankungen und insbesondere Krebs sein. Dabei spielen die Transkriptionsfaktoren der HIF-Familie eine bedeutende Rolle; deren Wirkung kann partiell durch USF-Proteine antagonisiert werden. Weiterhin scheinen positive Rückkopplungsmechanismen zwischen Hypoxie, HIF und der IGF-Achse zu existieren, die die Wirkung von Hypoxie oder Wachstumsfaktoren verstärken können. Somit kann die genaue Kenntnis der einzelnen Signalwege und ihrer Wechselwirkungen eventuell dazu beitragen neue Therapiestrategien für Erkrankungen zu entwickeln, die durch eine veränderte Sauerstoffverfügbarkeit gekennzeichnet sind.

Abstract

Oxygen has important functions as substrate for biochemical reactions and as modulator of gene expression. In the liver, the physiologically occurring oxygen gradient is a major effector of metabolic zonation. In addition, cross-talks between the O2 signaling and nutrient signaling chains initiate a dynamic zonation pattern. Under pathological situations, hypoxia appears to be a major determinant for liver diseases and cancer. Thereby transcription factors of the HIF family are activated whereas USF proteins have the potential to counteract HIFs. In addition, feedback mechanisms between hypoxia, HIF and the IGF axes appear to exist. Thus, the knowledge of these mechanisms may help to initiate new therapies in diseases with disturbed O2 availability.

References

  • 1 Piper J. Oxygen supply and energy metabolism. Greger R, Windhorst U Comprehensive human physiology Berlin, Heidelberg; Springer Verlag 1996: 2063-2069
  • 2 Greger R, Bleich M. Normal values for physiological parameters. Greger R, Windhorst U Comprehensive human physiology Berlin, Heidelberg; Springer Verlag 1996: 2427-2447
  • 3 Kietzmann T, Gorlach A. Reactive oxygen species in the control of hypoxia-inducible factor-mediated gene expression.  Semin Cell Dev Biol. 2005;  44 474-486
  • 4 Jungermann K, Kietzmann T. Oxygen: modulator of metabolic zonation and disease of the liver.  Hepatology. 2000;  44 255-260
  • 5 Kietzmann T, Fandrey J, Acker H. Oxygen radicals as messengers in the oxygen dependent gene expression.  News Physiol Sci. 2000;  44 202-208
  • 6 Sasse D, Spornitz U M, Maly I P. Liver architecture.  Enzyme. 1992;  44 8-32
  • 7 Haussinger D, Lamers W H, Moorman A F. Hepatocyte heterogeneity in the metabolism of amino acids and ammonia.  Enzyme. 1992;  44 72-93
  • 8 Gebhardt R, Gaunitz F. Cell-cell interactions in the regulation of the expression of hepatic enzymes.  Cell Biol Toxicol. 1997;  44 263-273
  • 9 Gumucio J J. Functional and anatomic heterogeneity in the liver acinus: impact on transport.  Am J Physiol. 1983;  44 G578-G582
  • 10 Quistorff B, Katz N, Witters L A. Hepatocyte heterogeneity in the metabolism of fatty acids: discrepancies on zonation of acetyl-CoA carboxylase.  Enzyme. 1992;  44 59-71
  • 11 Oinonen T, Lindros K O. Zonation of hepatic cytochrome P-450 expression and regulation.  Biochem J. 1998;  44 17-35
  • 12 Jungermann K, Kietzmann T. Zonation of parenchymal and nonparenchymal metabolism in liver.  Annu Rev Nutr. 1996;  44 179-203
  • 13 Gebhardt R, Gaunitz F, Mecke D. Heterogeneous (positional) expression of hepatic glutamine synthetase: features, regulation and implications for hepatocarcinogenesis.  Adv Enzyme Regul. 1994;  44 27-56
  • 14 Jungermann K, Katz N. Functional specialization of different hepatocyte populations.  Physiol Rev. 1989;  44 708-764
  • 15 Nauck M, Wolfle D, Katz N. et al . Modulation of the glucagon-dependent induction of phosphoenolpyruvate carboxykinase and tyrosine aminotransferase by arterial and venous oxygen concentrations in hepatocyte cultures.  Eur J Biochem. 1981;  44 657-661
  • 16 Jungermann K, Kietzmann T. Role of oxygen in the zonation of carbohydrate metabolism and gene expression in liver.  Kidney Int. 1997;  44 402-412
  • 17 Wolfle D, Jungermann K. Long-term effects of physiological oxygen concentrations on glycolysis and gluconeogenesis in hepatocyte cultures.  Eur J Biochem. 1985;  44 299-303
  • 18 Wolfle D, Schmidt H, Jungermann K. Short-term modulation of glycogen metabolism, glycolysis and gluconeogenesis by physiological oxygen concentrations in hepatocyte cultures.  Eur J Biochem. 1983;  44 405-412
  • 19 Hellkamp J, Christ B, Bastian H. et al . Modulation by oxygen of the glucagon-dependent activation of the phosphoenolpyruvate carboxykinase gene in rat hepatocyte cultures.  Eur J Biochem. 1991;  44 635-639
  • 20 Kietzmann T, Freimann S, Bratke J. et al . Regulation of the gluconeogenic phosphoenolpyruvate carboxykinase and glycolytic aldolase A gene expression by O2 in rat hepatocyte cultures. Involvement of hydrogen peroxide as mediator in the response to O2.  FEBS Lett. 1996;  44 228-232
  • 21 Kietzmann T, Schmidt H, Unthan F K. et al . A ferro-heme protein senses oxygen levels, which modulate the glucagon-dependent activation of the phosphoenolpyruvate carboxykinase gene in rat hepatocyte cultures.  Biochem Biophys Res Commun. 1993;  44 792-798
  • 22 Kietzmann T, Roth U, Freimann S. et al . Arterial oxygen partial pressures reduce the insulin-dependent induction of the perivenously located glucokinase in rat hepatocyte cultures: mimicry of arterial oxygen pressures by H2O2.  Biochem J. 1997;  44 17-20
  • 23 Roth U, Jungermann K, Kietzmann T. Activation of glucokinase gene expression by hepatic nuclear factor 4alpha in primary hepatocytes.  Biochem J. 2002;  44 223-228
  • 24 Bratke J, Kietzmann T, Jungermann K. Identification of an oxygen-responsive element in the 5’-flanking sequence of the rat cytosolic phosphoenolpyruvate carboxykinase-1 gene, modulating its glucagon-dependent activation.  Biochem J. 1999;  44 563-569
  • 25 Kietzmann T, Bratke J, Jungermann K. Diminution of the O2 responsiveness of the glucagon-dependent activation of the phosphoenolpyruvate carboxykinase gene in rat hepatocytes by long-term culture at venous pO2.  Kidney Int. 1997;  44 542-547
  • 26 Kietzmann T, Roth U, Jungermann K. Induction of the plasminogen activator inhibitor-1 gene expression by mild hypoxia via a hypoxia response element binding the hypoxia inducible factor-1 in rat hepatocytes.  Blood. 1999;  44 4177-4185
  • 27 Jiang H, Guo R, Powell-Coffman J A. The Caenorhabditis elegans hif-1 gene encodes a bHLH-PAS protein that is required for adaptation to hypoxia.  Proc Natl Acad Sci USA. 2001;  44 7916-7921
  • 28 Nagao M, Ebert B L, Ratcliffe P J. et al . Drosophila melanogaster SL2 cells contain a hypoxically inducible DNA binding complex which recognises mammalian HIF-binding sites.  FEBS Lett. 1996;  44 161-166
  • 29 Bacon N C, Wappner P, O’Rourke J F. et al . Regulation of the Drosophila bHLH-PAS protein Sima by hypoxia: functional evidence for homology with mammalian HIF-1 alpha.  Biochem Biophys Res Commun. 1998;  44 811-816
  • 30 Wang G L, Jiang B H, Rue E A. et al . Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension.  Proc Natl Acad Sci USA. 1995;  44 5510-5514
  • 31 Hoffman E C, Reyes H, Chu F F. et al . Cloning of a factor required for activity of the Ah (dioxin) receptor.  Science. 1991;  44 954-958
  • 32 Kvietikova I, Wenger R H, Marti H H. et al . The transcription factors ATF-1 and CREB-1 bind constitutively to the hypoxia-inducible factor-1 (HIF-1) DNA recognition site.  Nucleic Acids Res. 1995;  44 4542-4550
  • 33 Semenza G L, Jiang B H, Leung S W. et al . Hypoxia response elements in the aldolase A, enolase 1, and lactate dehydrogenase A gene promoters contain essential binding sites for hypoxia-inducible factor 1.  J Biol Chem. 1996;  44 32 529-32 537
  • 34 Wenger R H. Cellular adaptation to hypoxia: O2-sensing protein hydroxylases, hypoxia-inducible transcription factors, and O2-regulated gene expression.  FASEB J. 2002;  44 1151-1162
  • 35 Scortegagna M, Ding K, Oktay Y. et al . Multiple organ pathology, metabolic abnormalities and impaired homeostasis of reactive oxygen species in Epas1-/- mice.  Nat Genet. 2003;  44 331-340
  • 36 Hu C J, Wang L Y, Chodosh L A. et al . Differential roles of hypoxia-inducible factor 1alpha (HIF-1alpha) and HIF-2alpha in hypoxic gene regulation.  Mol Cell Biol. 2003;  44 9361-9374
  • 37 Sowter H M, Raval R R, Moore J W. et al . Predominant role of hypoxia-inducible transcription factor (Hif)- 1alpha versus Hif-2alpha in regulation of the transcriptional response to hypoxia.  Cancer Res. 2003;  44 6130-6134
  • 38 Kietzmann T, Cornesse Y, Brechtel K. et al . Perivenous expression of the mRNA of the three hypoxia-inducible factor alpha-subunits, HIF1alpha, HIF2alpha and HIF3alpha, in rat liver.  Biochem J. 2001;  44 531-537
  • 39 Hara S, Hamada J, Kobayashi C. et al . Expression and characterization of hypoxia-inducible factor (HIF)- 3alpha in human kidney: suppression of HIF-mediated gene expression by HIF-3alpha.  Biochem Biophys Res Commun. 2001;  44 808-813
  • 40 Makino Y, Kanopka A, Wilson W J. et al . Inhibitory PAS domain protein (IPAS) is a hypoxia-inducible splicing variant of the hypoxia-inducible factor-3alpha locus.  J Biol Chem. 2002;  44 32 405-32 408
  • 41 Makino Y, Cao R, Svensson K. et al . Inhibitory PAS domain protein is a negative regulator of hypoxia-inducible gene expression.  Nature. 2001;  44 550-554
  • 42 Maynard M A, Evans A J, Hosomi T. et al . Human HIF-3alpha4 is a dominant-negative regulator of HIF-1 and is down-regulated in renal cell carcinoma.  FASEB J. 2005;  44 1396-1406
  • 43 Gorlach A, Camenisch G, Kvietikova I. et al . Efficient translation of mouse hypoxia-inducible factor-1alpha under normoxic and hypoxic conditions.  Biochim Biophys Acta. 2000;  44 125-134
  • 44 Gross J, Rheinlander C, Fuchs J. et al . Expression of hypoxia-inducible factor-1 in the cochlea of newborn rats.  Hear Res. 2003;  44 73-83
  • 45 Pascual O, Denavit-Saubie M, Dumas S. et al . Selective cardiorespiratory and catecholaminergic areas express the hypoxia-inducible factor-1alpha (HIF-1alpha) under in vivo hypoxia in rat brainstem.  Eur J Neurosci. 2001;  44 1981-1991
  • 46 Heidbreder M, Frohlich F, Johren O. et al . Hypoxia rapidly activates HIF-3alpha mRNA expression.  FASEB J. 2003;  44 1541-1543
  • 47 Huang L E, Gu J, Schau M. et al . Regulation of hypoxia-inducible factor 1alpha is mediated by an O2-dependent degradation domain via the ubiquitin-proteasome pathway.  Proc Natl Acad Sci USA. 1998;  44 7987-7992
  • 48 Pugh C W, O’Rourke J F, Nagao M. et al . Activation of hypoxia-inducible factor-1; definition of regulatory domains within the alpha subunit.  J Biol Chem. 1997;  44 11 205-11 214
  • 49 Jiang B H, Zheng J Z, Leung S W. et al . Transactivation and inhibitory domains of hypoxia-inducible factor 1alpha. Modulation of transcriptional activity by oxygen tension.  J Biol Chem. 1997;  44 19 253-19 260
  • 50 Jaakkola P, Mole D R, Tian Y M. et al . Targeting of HIF-alpha to the von Hippel-Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation.  Science. 2001;  44 468-472
  • 51 Masson N, Willam C, Maxwell P H. et al . Independent function of two destruction domains in hypoxia-inducible factor-alpha chains activated by prolyl hydroxylation.  EMBO J. 2001;  44 5197-5206
  • 52 Maxwell P H, Wiesener M S, Chang G W. et al . The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis.  Nature. 1999;  44 271-275
  • 53 Tanimoto K, Makino Y, Pereira T. et al . Mechanism of regulation of the hypoxia-inducible factor-1 alpha by the von Hippel-Lindau tumor suppressor protein.  EMBO J. 2000;  44 4298-4309
  • 54 Ohh M, Park C W, Ivan M. et al . Ubiquitination of hypoxia-inducible factor requires direct binding to the beta-domain of the von Hippel-Lindau protein.  Nat Cell Biol. 2000;  44 423-427
  • 55 Min J H, Yang H, Ivan M. et al . Structure of an HIF-1alpha -pVHL complex: hydroxyproline recognition in signaling.  Science. 2002;  44 1886-1889
  • 56 Salceda S, Caro J. Hypoxia-inducible factor 1alpha (HIF-1alpha) protein is rapidly degraded by the ubiquitin-proteasome system under normoxic conditions. Its stabilization by hypoxia depends on redox-induced changes.  J Biol Chem. 1997;  44 22 642-22 647
  • 57 Kaelin W GJ, Maher E R. The VHL tumour-suppressor gene paradigm.  Trends Genet. 1998;  44 423-426
  • 58 Kamura T, Sato S, Haque D. et al . The Elongin BC complex interacts with the conserved SOCS-box motif present in members of the SOCS, ras, WD-40 repeat, and ankyrin repeat families.  Genes Dev. 1998;  44 3872-3881
  • 59 Kallio P J, Wilson W J, O’Brien S. et al . Regulation of the hypoxia-inducible transcription factor 1alpha by the ubiquitin-proteasome pathway.  J Biol Chem. 1999;  44 6519-6525
  • 60 Ivan M, Kondo K, Yang H. et al . HIFalpha targeted for VHL-mediated destruction by proline hydroxylation: implications for O2 sensing.  Science. 2001;  44 464-468
  • 61 Bruick R K, McKnight S L. A conserved family of prolyl-4-hydroxylases that modify HIF.  Science. 2001;  44 1337-1340
  • 62 Epstein A C, Gleadle J M, McNeill L A. et al . C. elegans EGL-9 and mammalian homologs define a family of dioxygenases that regulate HIF by prolyl hydroxylation.  Cell. 2001;  44 43-54
  • 63 Ivan M, Haberberger T, Gervasi D C. et al . Biochemical purification and pharmacological inhibition of a mammalian prolyl hydroxylase acting on hypoxia-inducible factor.  Proc Natl Acad Sci USA. 2002;  44 13 459-13 464
  • 64 Oehme F, Ellinghaus P, Kolkhof P. et al . Overexpression of PH-4, a novel putative proline 4-hydroxylase, modulates activity of hypoxia-inducible transcription factors.  Biochem Biophys Res Commun. 2002;  44 343-349
  • 65 Mahon P C, Hirota K, Semenza G L. FIH-1: a novel protein that interacts with HIF-1alpha and VHL to mediate repression of HIF-1 transcriptional activity.  Genes Dev. 2001;  44 2675-2686
  • 66 Hewitson K S, McNeill L A, Riordan M V. et al . Hypoxia-inducible factor (HIF) asparagine hydroxylase is identical to factor inhibiting HIF (FIH) and is related to the cupin structural family.  J Biol Chem. 2002;  44 26 351-26 355
  • 67 Lando D, Peet D J, Gorman J J. et al . FIH-1 is an asparaginyl hydroxylase enzyme that regulates the transcriptional activity of hypoxia-inducible factor.  Genes Dev. 2002;  44 1466-1471
  • 68 Lando D, Peet D J, Whelan D A. et al . Asparagine hydroxylation of the HIF transactivation domain a hypoxic switch.  Science. 2002;  44 858-861
  • 69 Huang L E, Arany Z, Livingston D M. et al . Activation of hypoxia-inducible transcription factor depends primarily upon redox-sensitive stabilization of its alpha subunit.  J Biol Chem. 1996;  44 32 253-32 259
  • 70 Ema M, Hirota K, Mimura J. et al . Molecular mechanisms of transcription activation by HLF and HIF1alpha in response to hypoxia: their stabilization and redox signal-induced interaction with CBP/p300.  EMBO J. 1999;  44 1905-1914
  • 71 Carrero P, Okamoto K, Coumailleau P. et al . Redox-regulated recruitment of the transcriptional coactivators CREB-binding protein and SRC-1 to hypoxia-inducible factor 1alpha.  Mol Cell Biol. 2000;  44 402-415
  • 72 Zelzer E, Levy Y, Kahana C. et al . Insulin induces transcription of target genes through the hypoxia-inducible factor HIF-1alpha/ARNT.  EMBO J. 1998;  44 5085-5094
  • 73 Treins C, Giorgetti-Peraldi S, Murdaca J. et al . Insulin stimulates hypoxia-inducible factor 1 through a phosphatidylinositol 3-kinase/target of rapamycin-dependent signaling pathway.  J Biol Chem. 2002;  44 27 975-27 981
  • 74 Kietzmann T, Samoylenko A, Roth U. et al . Hypoxia-inducible factor-1 and hypoxia response elements mediate the induction of plasminogen activator inhibitor-1 gene expression by insulin in primary rat hepatocytes.  Blood. 2003;  44 907-914
  • 75 Gorlach A, Diebold I, Schini-Kerth V B. et al . Thrombin activates the hypoxia-inducible factor-1 signaling pathway in vascular smooth muscle cells: Role of the p22(phox)-containing NADPH oxidase.  Circ Res. 2001;  44 47-54
  • 76 Richard D E, Berra E, Pouyssegur J. Nonhypoxic pathway mediates the induction of hypoxia-inducible factor 1alpha in vascular smooth muscle cells.  J Biol Chem. 2000;  44 26 765-26 771
  • 77 Fukuda R, Hirota K, Fan F. et al . Insulin-like growth factor 1 induces hypoxia-inducible factor 1-mediated vascular endothelial growth factor expression, which is dependent on MAP kinase and phosphatidylinositol 3-kinase signaling in colon cancer cells.  J Biol Chem. 2002;  44 38 205-38 211
  • 78 Stiehl D P, Jelkmann W, Wenger R H. et al . Normoxic induction of the hypoxia-inducible factor 1alpha by insulin and interleukin-1beta involves the phosphatidylinositol 3-kinase pathway.  FEBS Lett. 2002;  44 157-162
  • 79 Hirota K, Fukuda R, Takabuchi S. et al . Induction of hypoxia-inducible factor 1 activity by muscarinic acetylcholine receptor signaling.  J Biol Chem. 2004;  44 41 521-41 528
  • 80 Berchner-Pfannschmidt U, Petrat F, Doege K. et al . Chelation of cellular calcium modulates hypoxia-inducible gene expression through activation of hypoxia-inducible factor-1alpha.  J Biol Chem. 2004;  44 44 976-44 986
  • 81 Liu Q, Moller U, Flugel D. et al . Induction of plasminogen activator inhibitor I gene expression by intracellular calcium via hypoxia-inducible factor-1.  Blood. 2004;  44 3993-4001
  • 82 Yuan G, Nanduri J, Bhasker C R. et al . Ca2 +/calmodulin kinase-dependent activation of hypoxia inducible factor 1 transcriptional activity in cells subjected to intermittent hypoxia.  J Biol Chem. 2005;  44 4321-4328
  • 83 Mottet D, Michel G, Renard P. et al . ERK and calcium in activation of HIF-1.  Ann NY Acad Sci. 2002;  44 448-453
  • 84 Duyndam M C, Hulscher T M, Fontijn D. et al . Induction of vascular endothelial growth factor expression and hypoxia-inducible factor 1alpha protein by the oxidative stressor arsenite.  J Biol Chem. 2001;  44 48 066-48 076
  • 85 Gao N, Jiang B H, Leonard S S. et al . p38 Signaling-mediated hypoxia-inducible factor 1alpha and vascular endothelial growth factor induction by Cr(VI) in DU145 human prostate carcinoma cells.  J Biol Chem. 2002;  44 45 041-45 048
  • 86 Kim C H, Cho Y S, Chun Y S. et al . Early expression of myocardial HIF-1alpha in response to mechanical stresses: regulation by stretch-activated channels and the phosphatidylinositol 3-kinase signaling pathway.  Circ Res. 2002;  44 E25-E33
  • 87 Chatzipanagiotou S, Nath A, Vogt B. et al . Alteration in the capacities as well as in the zonal and cellular distributions of pyruvate kinase L and M2 in regenerating rat liver.  Biol Chem Hoppe Seyler. 1985;  44 271-280
  • 88 Zierz S, Katz N, Jungermann K. Distribution of pyruvate kinase type L and M2 in microdissected periportal and perivenous rat liver tissue with different dietary states.  Hoppe Seylers Z Physiol Chem. 1983;  44 1447-1453
  • 89 Vallet V S, Casado M, Henrion A A. et al . Differential roles of upstream stimulatory factors 1 and 2 in the transcriptional response of liver genes to glucose.  J Biol Chem. 1998;  44 20 175-20 179
  • 90 Vallet V S, Henrion A A, Bucchini D. et al . Glucose-dependent liver gene expression in upstream stimulatory factor 2 -/- mice.  J Biol Chem. 1997;  44 21 944-21 949
  • 91 Vaulont S, Kahn A. Transcriptional control of metabolic regulation genes by carbohydrates.  FASEB J. 1994;  44 28-35
  • 92 Kawaguchi T, Takenoshita M, Kabashima T. et al . Glucose and cAMP regulate the L-type pyruvate kinase gene by phosphorylation/dephosphorylation of the carbohydrate response element binding protein.  Proc Natl Acad Sci USA. 2001;  44 13 710-13 715
  • 93 Bergot M O, Diaz G M, Puzenat N. et al . Cis-regulation of the L-type pyruvate kinase gene promoter by glucose, insulin and cyclic AMP.  Nucleic Acids Res. 1992;  44 1871-1877
  • 94 Vaulont S, Puzenat N, Kahn A. et al . Analysis by cell-free transcription of the liver-specific pyruvate kinase gene promoter.  Mol Cell Biol. 1989;  44 4409-4415
  • 95 Kahn A. Transcriptional regulation by glucose in the liver.  Biochimie. 1997;  44 113-118
  • 96 Shih H, Towle H C. Definition of the carbohydrate response element of the rat S14 gene. Context of the CACGTG motif determines the specificity of carbohydrate regulation.  J Biol Chem. 1994;  44 9380-9387
  • 97 Shih H M, Towle H C. Definition of the carbohydrate response element of the rat S14 gene. Evidence for a common factor required for carbohydrate regulation of hepatic genes.  J Biol Chem. 1992;  44 13 222-13 228
  • 98 Towle H C, Kaytor E N, Shih H M. Metabolic regulation of hepatic gene expression.  Biochem Soc Trans. 1996;  44 364-368
  • 99 Mathupala S P, Rempel A, Pedersen P L. Glucose catabolism in cancer cells: identification and characterization of a marked activation response of the type II hexokinase gene to hypoxic conditions.  J Biol Chem. 2001;  44 43 407-43 412
  • 100 Latasa M J, Moon Y S, Kim K H. et al . Nutritional regulation of the fatty acid synthase promoter in vivo: sterol regulatory element binding protein functions through an upstream region containing a sterol regulatory element.  Proc Natl Acad Sci USA. 2000;  44 10 619-10 624
  • 101 Krones A, Jungermann K, Kietzmann T. Cross-talk between the signals hypoxia and glucose at the glucose response element of the L-type pyruvate kinase gene.  Endocrinology. 2001;  44 2707-2718
  • 102 Kietzmann T, Krones-Herzig A, Jungermann K. Signaling cross-talk between hypoxia and glucose via hypoxia-inducible factor 1 and glucose response elements.  Biochem Pharmacol. 2002;  44 903-911
  • 103 Catrina S B, Okamoto K, Pereira T. et al . Hyperglycemia regulates hypoxia-inducible factor-1alpha protein stability and function.  Diabetes. 2004;  44 3226-3232
  • 104 Carmeliet P, Dor Y, Herbert J M. et al . Role of HIF-1alpha in hypoxia-mediated apoptosis, cell proliferation and tumour angiogenesis [published erratum appears in Nature 1998; 395 (6701): 525].  Nature. 1998;  44 485-490
  • 105 Ryan H E, Lo J, Johnson R S. HIF-1 alpha is required for solid tumor formation and embryonic vascularization.  EMBO J. 1998;  44 3005-3015
  • 106 Mastrapasqua G, Scapinello A, Madia D. et al . Ischemic hepatitis. Description of 4 cases and review of the literature.  Minerva-Gastroenterol-Dietol. 1993;  44 93-97
  • 107 Mathurin P, Durand F, Ganne N. et al . Ischemic hepatitis due to obstructive sleep apnea.  Gastroenterology. 1995;  44 1682-1684
  • 108 Horie Y, Wolf R, Anderson D C. et al . Hepatic leukostasis and hypoxic stress in adhesion molecule-deficient mice after gut ischemia/reperfusion.  J Clin Invest. 1997;  44 781-788
  • 109 Horie Y, Wolf R, Miyasaka M. et al . Leukocyte adhesion and hepatic microvascular responses to intestinal ischemia/reperfusion in rats.  Gastroenterology. 1996;  44 666-673
  • 110 Stachlewitz R F, Arteel G E, Raleigh J A. et al . Development and characterization of a new model of tacrine-induced hepatotoxicity: role of the sympathetic nervous system and hypoxia-reoxygenation.  J Pharmacol Exp Ther. 1997;  44 1591-1599
  • 111 Israel Y, Orrego H. Hepatocyte demand and substrate supply as factors in the susceptibility to alcoholic liver injury: pathogenesis and prevention.  Clin Gastroenterol. 1981;  44 355-373
  • 112 Jauhonen P, Baraona E, Lieber C S. et al . Dependence of ethanol-induced redox shift on hepatic oxygen tensions prevailing in vivo.  Alcohol. 1985;  44 163-167
  • 113 Binder B R, Christ G, Gruber F. et al . Plasminogen activator inhibitor 1: Physiological and pathophysiological roles.  News Physiol Sci. 2002;  44 56-61
  • 114 Andreasen P A, Kjoller L, Christensen L. et al . The urokinase-type plasminogen activator system in cancer metastasis: a review.  Int J Cancer. 1997;  44 1-22
  • 115 Kruithof E KO, Vassalli J D, Schleuning W D. et al . Purification and characterization of a plasminogen-activator inhibitor from the histiocytic lymphoma cell-Line U-937.  J Biol Chem. 1986;  44 1207-1213
  • 116 Kohler H P, Grant P J. Mechanisms of disease: Plasminogen-activator inhibitor type 1 and coronary artery disease.  New Engl J Med. 2000;  44 1792-1801
  • 117 Seki T, Imai H, Uno S. et al . Production of tissue-type plasminogen activator (t-PA) and type-1 plasminogen activator inhibitor (PAI-1) in mildly cirrhotic rat liver.  Thromb Haemost. 1996;  44 801-807
  • 118 Mezey E. Commentary on the hypermetabolic state and the role of oxygen in alcohol-induced liver injury.  Recent Dev Alcohol. 1984;  44 135-141
  • 119 Neubauer K, Knittel T, Armbrust T. et al . Accumulation and cellular localization of fibrinogen/fibrin during short-term and long-term rat liver injury.  Gastroenterology. 1995;  44 1124-1135
  • 120 Yamamoto K, Saito H. A pathological role of increased expression of plasminogen activator inhibitor-1 in human or animal disorders.  Int J Hematol. 1998;  44 371-385
  • 121 Fink T, Kazlauskas A, Poellinger L. et al . Identification of a tightly regulated hypoxia-response element in the promoter of human plasminogen activator inhibitor-1.  Blood. 2002;  44 2077-2083
  • 122 Samoylenko A, Roth U, Jungermann K. et al . The upstream stimulatory factor-2 a inhibits plasminogen activator inhibitor-1 gene expression by binding to a promoter element adjacent to the hypoxia-inducible factor-1 binding site.  Blood. 2001;  44 2657-2666
  • 123 Pedersen H, Brunner N, Francis D. et al . Prognostic impact of urokinase, urokinase receptor, and type 1 plasminogen activator inhibitor in squamous and large cell lung cancer tissue.  Cancer Res. 1994;  44 4671-4675
  • 124 Grondahl H J, Christensen I J, Rosenquist C. et al . High levels of urokinase-type plasminogen activator and its inhibitor PAI-1 in cytosolic extracts of breast carcinomas are associated with poor prognosis.  Cancer Res. 1993;  44 2513-2521
  • 125 Kuhn W, Pache L, Schmalfeldt B. et al . Urokinase (uPA) and PAI-1 predict survival in advanced ovarian cancer patients (FIGO III) after radical surgery and platinum-based chemotherapy.  Gynecol Oncol. 1994;  44 401-409
  • 126 Bos R, Zhong H, Hanrahan C F. et al . Levels of hypoxia-inducible factor-1 alpha during breast carcinogenesis.  J Natl Cancer Inst. 2001;  44 309-314
  • 127 Cangul H, Salnikow K, Yee H. et al . Enhanced overexpression of an HIF-1/hypoxia-related protein in cancer cells.  Environ Health Perspect. 2002;  44 783-788
  • 128 Maxwell P H, Dachs G U, Gleadle J M. et al . Hypoxia-inducible factor-1 modulates gene expression in solid tumors and influences both angiogenesis and tumor growth.  Proc Natl Acad Sci USA. 1997;  44 8104-8109
  • 129 Jiang B H, Agani F, Passaniti A. et al . V-SRC induces expression of hypoxia-inducible factor 1 (HIF-1) and transcription of genes encoding vascular endothelial growth factor and enolase 1: involvement of HIF-1 in tumor progression.  Cancer Res. 1997;  44 5328-5335
  • 130 Luo X, Sawadogo M. Antiproliferative properties of the USF family of helix-loop-helix transcription factors.  Proc Natl Acad Sci USA. 1996;  44 1308-1313
  • 131 Blakesley V A, Scrimgeour A, Esposito D. et al . Signaling via the insulin-like growth factor-I receptor: does it differ from insulin receptor signaling?.  Cytokine Growth Factor Rev. 1996;  44 153-159
  • 132 Furstenberger G, Morant R, Senn H J. Insulin-like growth factors and breast cancer.  Onkologie. 2003;  44 290-294
  • 133 Clemmons D R. Insulin-like growth factor binding proteins and their role in controlling IGF actions.  Cytokine Growth Factor Rev. 1997;  44 45-62
  • 134 Jones J I, Clemmons D R. Insulin-like growth factors and their binding proteins: biological actions.  Endocr Rev. 1995;  44 3-34
  • 135 Bach L A, Rechler M M. Insulin-like growth factors and diabetes.  Diabetes Metab Rev. 1992;  44 229-257
  • 136 Scharf J G, Braulke T, Hartmann H. et al . Regulation of the components of the 150 kDa IGF binding protein complex in cocultures of rat hepatocytes and Kupffer cells by 3’,5’-cyclic adenosine monophosphate.  J Cell Physiol. 2001;  44 425-436
  • 137 Hazel S J, Nordqvist A C, Hall K. et al . Differential expression of IGF-I and IGF-binding protein-1 and - 2 in periportal and perivenous zones of rat liver.  J Endocrinol. 1998;  44 285-294
  • 138 Scharf J G, Unterman T G, Kietzmann T. Oxygen-dependent modulation of IGF binding protein biosynthesis in primary cultures of rat hepatocytes.  Endocrinology. 2005;  44 5433-5443
  • 139 Tucci M, Nygard K, Tanswell B V. et al . Modulation of insulin-like growth factor (IGF) and IGF binding protein biosynthesis by hypoxia in cultured vascular endothelial cells.  J Endocrinol. 1998;  44 13-24
  • 140 Tazuke S I, Mazure N M, Sugawara J. et al . Hypoxia stimulates insulin-like growth factor binding protein 1 (IGFBP-1) gene expression in HepG2 cells: a possible model for IGFBP-1 expression in fetal hypoxia.  Proc Natl Acad Sci USA. 1998;  44 10 188-10 193
  • 141 Kim K W, Bae S K, Lee O H. et al . Insulin-like growth factor II induced by hypoxia may contribute to angiogenesis of human hepatocellular carcinoma.  Cancer Res. 1998;  44 348-351
  • 142 Averbukh E, Weiss O, Halpert M. et al . Gene expression of insulin-like growth factor-I, its receptor and binding proteins in retina under hypoxic conditions.  Metabolism. 1998;  44 1331-1336
  • 143 Feldser D, Agani F, Iyer N V. et al . Reciprocal positive regulation of hypoxia-inducible factor 1 alpha and insulin-like growth factor 2.  Cancer Res. 1999;  44 3915-3918
  • 144 Dimova E Y, Moller U, Herzig S. et al . Transcriptional regulation of plasminogen activator inhibitor-1 expression by insulin-like growth factor-1 via MAP kinases and hypoxia-inducible factor-1 in HepG2 cells.  Thromb Haemost. 2005;  44 1176-1184
  • 145 Tsai J F, Jeng J E, Chuang L Y. et al . Serum insulin-like growth factor-II and alpha-fetoprotein as tumor markers of hepatocellular carcinoma.  Tumour Biol. 2003;  44 291-298
  • 146 Scharf J G, Braulke T. The role of the IGF axis in hepatocarcinogenesis.  Horm Metab Res. 2003;  44 685-693
  • 147 Song B C, Chung Y H, Kim J A. et al . Association between insulin-like growth factor-2 and metastases after transcatheter arterial chemoembolization in patients with hepatocellular carcinoma: a prospective study.  Cancer. 2001;  44 2386-2393

Dr. Thomas Kietzmann

Department of Biochemistry, Faculty of Chemistry, University of Kaiserslautern

67663 Kaiserslautern

Phone: ++ 49/6 31/2 05 49 53

Fax: ++ 49/6 31/2 05 34 19

Email: tkietzm@gwdg.de

    >