References
<A NAME="RD01805ST-1">1</A>
Currently at the Department of Chemistry, University of Durham, Durham DH1 3LE, UK.
<A NAME="RD01805ST-2A">2a</A>
Kuznetsov EV.
Shcherbakova IV.
Balaban AT.
Adv. Heterocycl. Chem.
1990,
50:
157
<A NAME="RD01805ST-2B">2b</A>
Doddi G.
Ercolani G.
Adv. Heterocycl. Chem.
1994,
60:
65
<A NAME="RD01805ST-3A">3a</A>
Dorofeenko GN.
Korobkova VG.
Chem. Ind.
1968,
52:
1848
<A NAME="RD01805ST-3B">3b</A>
Plieninger H.
Müller W.
Weinert K.
Chem. Ber.
1964,
97:
667
<A NAME="RD01805ST-4A">4a</A>
Dulenko VI.
Tolkunov SV.
Alekseev NN.
Chem. Heterocycl. Compd.
1981,
17:
1010
<A NAME="RD01805ST-4B">4b</A>
Tolkunov SV.
Chem. Heterocycl. Compd.
1998,
34:
1132
<A NAME="RD01805ST-4C">4c</A>
Tolkunov SV.
Khizhan AI.
Simonova SI.
Semenov NS.
Lyashchuk SN.
Chem. Heterocycl. Compd.
1994,
30:
283
<A NAME="RD01805ST-4D">4d</A>
Dulenko VI.
Tolkunov SV.
Chem. Heterocycl. Compd.
1987,
23:
730
<A NAME="RD01805ST-5">5</A>
Tolkunov VS.
Tolkunov SV.
Dulenko VI.
Chem. Heterocycl. Compd.
2002,
38:
359
<A NAME="RD01805ST-6A">6a</A>
Kazuo I.
Kenichi Y.
Shigetaka Y.
Akira T.
Katsumi Y.
J. Heterocycl. Chem.
1977,
15:
301
<A NAME="RD01805ST-6B">6b</A>
Kenichi Y.
Yakugaku Zasshi
1980,
100:
313
<A NAME="RD01805ST-7A">7a</A>
Balaban AT.
Ghiviriga I.
Czerwinski EW.
De P.
Faust R.
J. Org. Chem.
2004,
69:
536
<A NAME="RD01805ST-7B">7b</A>
Moghimi A.
Rastegar MF.
Ghandi M.
Taghizaden M.
Yari A.
Shamsipur M.
Yap GPA.
Rahbarnoohi H.
J. Org. Chem.
2002,
67:
2065
<A NAME="RD01805ST-7C">7c</A>
Doddi G.
Ercolani G.
Mencarelli P.
Tetrahedron
1991,
47:
1977
<A NAME="RD01805ST-7D">7d</A>
Eisner U.
Krishnamurthy T.
J. Org. Chem.
1972,
37:
150
<A NAME="RD01805ST-8">8</A>
General Procedure for the Reaction of Perchlorates 1a-c with Nucleophiles.
To the solution of ammonium carbamate (50 mmol) in MeOH (50 mL) 5-alkyl-7,8-dimethoxy-2-arylben-zo[d]pyrrolo[3,2-b]pyrylium perchlorate (1a-c, 5 mmol)
[5]
was added and the mixture was refluxed for 2 h. MeOH was removed in vacuo and H2O (50 mL) was added to the residue. After stirring for 20 min, the product was filtered
off, washed with H2O and dried to afford compounds 2a, 2b, or 2c in 50%, 47% and 43% yields, respectively.
7,8-Dimethoxy-5-methyl-2-phenylfuro[2,3-
c
]iso-quinoline (
2a): colorless needles, mp 199-200 °C (from MeCN). 1H NMR (500 MHz, DMSO-d
6): δ = 2.88 (s, 3 H, CH3), 3.96 (s, 3 H, 7-OMe), 4.07 (s, 3 H, 8-OMe), 7.34 (t, 1 H, J = 7.8 Hz, C4′-H), 7.40 (s, 1 H, C6-H), 7.47 (t, J = 7.8 Hz, 2 H, C3′ and C5′-H), 7.56 (s, 1 H, C9-H), 7.69 (s, 1 H, C1-H), 7.91 (d, J = 7.8 Hz, 2 H, C2′ and C6′-H). MS (EI): m/z (%) = 319 (100) [M+]. Anal. Calcd for C20H17NO3: H, 75.22; H, 5.37; N, 4.39. Found: C, 75.32; H, 5.31; N, 4.45.
7,8-Dimethoxy-5-ethyl-2-phenylfuro[2,3-
c
]isoquinoline (
2b): colorless needles, mp 173-174 °C (from 2-PrOH). 1H NMR (500 MHz, DMSO-d
6): δ = 1.40 (t, J = 7.5 Hz, 3 H, CH3,), 3.30 (q, J = 7.5 Hz, 2 H, CH2), 3.96 (s, 3 H, 7-OMe), 4.02 (s, 3 H, 8-OMe), 7.40 (t, 1 H, J = 7.8 Hz, C4′-H), 7.52 (t, J = 7.8 Hz, 2 H, C3′ and C5′-H), 7.54 (c, 1 H, C6-H), 7.71 (c, 1 H, C9-H), 7.91 (d,
J = 7.8 Hz, 2 H, C2′ and C6′-H), 7.96 (c, 1 H, C1-H). MS (EI): m/z (%) = 333 (100) [M+]. Anal. Calcd for C21H19NO3: C, 75.66; H, 5.74; N, 4.20. Found: C, 75.48; H, 5.65; N, 4.31.
7,8-Dimethoxy-5-methyl-2-(4-bromophenyl)furo[2,3-
c
]isoquinoline (
2c): colorless needles, mp 212-213 °C (from 2-PrOH). 1H NMR (500 MHz, DMSO-d
6): δ = 2.89 (s, 3 H, CH3), 3.96 (s, 3 H, 7-OMe), 4.01 (s, 3 H, 8-OCH3), 7.49 (s, 1 H, C6-H), 7.67 (s, 1 H, C9-H), 7.73 (d, J = 8.5 Hz, 2 H, C2′ and C6′-H), 7.82 (d, J = 8.5 Hz, 2 H, C3′ and C5′-H), 8.00 (s, 1 H, C1-H). MS (EI): m/z (%) = 397 (98, 79Br) [M+], 399 (100, 81Br) [M+]. Anal. Calcd for C20H16BrNO3: C, 60.32; H, 4.05; Br, 20.06; N, 3.52. Found: C, 60.48; H, 4.18; Br, 20.23; N, 3.38.
<A NAME="RD01805ST-9">9</A>
Melting points were determined on a Kofler hot-stage apparatus and were uncorrected.
The 1H NMR spectra were obtained on a Bruker DRX500 (500.13 MHz) spectrometer using dimethylsulfoxide-d
6 as a solvent. Chemical shifts (δ) are in ppm and J values are in Hz. Mass spectra (EIMS) were determined with FINNIGAN MAT; INCOS 50
mass spectrometer operating at ionization potential of 70 eV.
<A NAME="RD01805ST-10">10</A>
The crystals of 2a are monoclinic, C20H17NO3, at 20 °C a = 9.892 (2), b = 12.452(3), c = 12.971 (3) Å, β = 94.25(2)°, V = 1593.4 (6) Å3, M
r = 159.67, Z = 4, space group P21/n, d
calc = 1.331 g cm-3, µ(Mo-Kα) = 0.090 mm-1, F(000) = 672. Unit cell dimensions and intensity of 2850 reflections (2686 unique,
R
int = 0.035) were measured using automatic four-circle ‘Siemens P3/PC’ diffractometer
(graphite-monochromated Mo-Kα radiation, 2θ/θ-scan, 2θmax = 50°). The structure was solved by direct method using SHELX97 software [Sheldrick,
G. M. SHELX97, PC Version. A system of computer programs for the crystal structure
solution and refinement, Rev. 2, 1998]. The positions of the hydrogen atoms were located
from difference maps of electron density and refined using riding model with Uiso = nUeq of non-hydrogen atom bonded with hydrogen atom given (n = 1.5 for methyl groups and
n = 1.2 for remaining H atoms). The structure was refined by full-matrix least squares
method using anisotropic thermal parameters for all non-hydrogen atoms. Final divergence
factors are wR2 = 0.155 for 3001 reflections (R1 = 0.052 for 1827 reflections with F > 4σ(F), S = 0.971). The full tables of the atomic coordinates, bond lengths and bond angles
have been deposited at the Cambridge Crystallographic Data Centre, CCDC No 198113.
<A NAME="RD01805ST-11">11</A>
Zefirov YV.
Zorky PM.
Usp. Khim.
1989,
58:
713 ; in Russian
<A NAME="RD01805ST-12">12</A>
When appropriate amounts of Et3N or NaOAc or HCl were used instead of ammonium carbamate,
compounds 2a-c were isolated in similar yields to that for the reaction with ammonium carbamate.
In the case of HCl, pyrylium salt (1a-c) was dissolved in concd aq HCl (10 mL per 1 g of 1a-c) on heating, the solution was refluxed for 2 h, cooled down and acidified with aq
NaHCO3 until neutral or slightly basic reaction. The precipitate was filtered off, washed
with H2O and dried to afford compounds 2a-c in somewhat lower yields (30-35%).
<A NAME="RD01805ST-13A">13a</A>
He Z.
Milburn GHW.
Danel A.
Puchala A.
Tomasik P.
Rasala D.
J. Mater. Chem.
1997,
7:
2323
<A NAME="RD01805ST-13B">13b</A>
Tao YT.
Balasubramaniam E.
Danel A.
Jarosz B.
Tomasik P.
Chem. Mater.
2001,
13:
1207
<A NAME="RD01805ST-14">14</A>
Tao, Y. T.; Bogza, S. L.; Perepichka, I. F., manuscript in preparation.
<A NAME="RD01805ST-15A">15a</A>
Tao YT.
Balasubramaniam E.
Danel A.
Tomasik P.
Appl. Phys. Lett.
2000,
77:
933
<A NAME="RD01805ST-15D">15d</A>
Balasubramaniam E.
Tao YT.
Danel A.
Tomasik P.
Chem. Mater.
2000,
12:
2788
<A NAME="RD01805ST-16">16</A>
Wang P.
Xie Z.
Hong Z.
Tang JT.
Wong O.
Lee C.-S.
Wong N.
Lee S.
J. Mater. Chem.
2003,
13:
1894