References
<A NAME="RD34804ST-1">1</A>
Part 56 in the series, ‘Studies on Novel Synthetic Methodologies’. IICT Communication
No. 050216
<A NAME="RD34804ST-2A">2a</A>
Baylis AB, and
Hillman MED. inventors; German Patent 2155113.
; Chem. Abstr. 1972, 77, 34174q
<A NAME="RD34804ST-2B">2b</A>
Basavaiah D.
Rao AJ.
Satyanarayana T.
Chem. Rev.
2003,
103:
811 ; and references cited therein
<A NAME="RD34804ST-3A">3a</A>
Hoffmann HMR.
Rabe J.
Angew. Chem., Int. Ed. Engl.
1985,
24:
94
<A NAME="RD34804ST-3B">3b</A>
Buchholz R.
Hoffmann HMR.
Helv. Chim. Acta
1991,
74:
1213
<A NAME="RD34804ST-4A">4a</A>
Das B.
Banerjee J.
Ravindranath N.
Venkataiah B.
Tetrahedron Lett.
2004,
45:
2425
<A NAME="RD34804ST-4B">4b</A>
Das B.
Banerjee J.
Ravindranath N.
Tetrahedron
2004,
60:
8357
<A NAME="RD34804ST-4C">4c</A>
Das B.
Banerjee J.
Mahender G.
Majhi A.
Org. Lett.
2004,
6:
3349
<A NAME="RD34804ST-4D">4d</A>
Das B.
Banerjee J.
Majhi A.
Mahender G.
Tetrahedron Lett.
2004,
45:
9225
<A NAME="RD34804ST-5A">5a</A>
Ma J.
Angew. Chem. Int. Ed.
2003,
42:
4290
<A NAME="RD34804ST-5B">5b</A>
Chowdari NS.
Suri JT.
Barbas CF.
Org. Lett.
2004,
6:
2507
<A NAME="RD34804ST-6">6</A>
Ramesh C.
Mahender G.
Ravindranath N.
Das B.
Tetrahedron
2003,
59:
1049
<A NAME="RD34804ST-7">7</A>
Tanemura K.
Suzuki T.
Nishida Y.
Satsumabayashi K.
Horaguchi T.
Chem. Commun.
2004,
470
<A NAME="RD34804ST-8">8</A>
General Procedure for the Preparation of Allylamines.
To a solution of 1 or 2 (1 mmol) in anhyd MeOH (10 mL), NH4OAc (8 equiv) was added in one portion under a nitrogen atmosphere. The mixture was
stirred at r.t. and monitored by TLC. After completion, the solution was concentrated
and dissolved in CH2Cl2 (10 mL). The solution was washed with brine (3 × 10 mL) followed by H2O (3 × 10 mL) and the combined aqueous washings extracted with CH2Cl2 (3 × 10 mL). The total CH2Cl2 portion was concentrated and subjected to column chromatography over silica gel using
EtOAc-hexane (1:4) as eluent to afford pure allylamine (3 or 4). The spectroscopic and analytical data of some representative allylamines (major
product) are given below.
Compound 3b: IR (KBr): νmax = 3452, 1722, 1526, 1482 cm-1. 1H NMR (200 MHz, CDCl3): δ = 7.92 (1 H, s), 7.46 (1 H, dd, J = 8.0, 2.0 Hz), 7.34 (1 H, dd, J = 8.0, 2.0 Hz), 7.22 (1 H, td, J = 8.0, 2.0 Hz), 7.12 (1 H, td, J = 8.0, 2.0 Hz), 3.74 (3 H, s), 3.10 (2 H, s). 13C NMR (50 MHz, CDCl3): δ = 168.4, 139.7, 134.0, 133.5, 131.6, 131.2, 129.8, 129.4, 126.6, 52.0, 49.6.
EIMS: m/z = 225, 227 [M+]. Anal. Calcd for C11H12ClNO2 (%): C, 58.54; H, 5.32; N, 6.21. Found: C, 58.62; H, 5.29; N, 6.28.
Compound 3d: IR (KBr): νmax = 3462, 1723, 1585, 1505 cm-1. 1H NMR (200 MHz, CDCl3): δ = 8.40 (1 H, t, J = 2.0 Hz), 8.18 (1 H, dt, J = 8.0, 2.0 Hz), 7.82 (1 H, dt, J = 8.0, 2.0 Hz), 7.80 (1 H, s), 7.54 (1 H, t, J = 8.0 Hz), 3.83 (3 H, s), 3.54 (2 H, s). 13C NMR (50 MHz, CDCl3): δ = 167.8, 148.3, 140.0, 136.4, 135.6, 129.6, 135.3, 124.3, 123.4, 52.2, 50.1.
MS (EI): m/z = 236 [M+]. Anal. Calcd for C11H12N2O4 (%): C, 55.93; H, 5.08; N, 11.86. Found: C, 55.88; H, 5.01; N, 11.84.
Compound 3e: IR (KBr): νmax = 3440, 1732, 1560, 1522 cm-1. 1H NMR (200 MHz, CDCl3): δ = 6.89 (1 H, t, J = 7.0 Hz), 3.64 (3 H, s), 3.08 (2 H, s), 2.09 (2 H, t, J = 7.0 Hz), 1.72 (1 H, m), 0.92 (6 H, d, J = 7.0 Hz). MS (EI): m/z = 171 [M+]. Anal. Calcd for C9H17NO2 (%): C, 63.17; H, 15.74; N, 12.96. Found: C, 63.24; H, 15.81; N, 12.85.
Compound 4a: IR (KBr): νmax = 3453, 2354, 1620, 1532 cm-1. 1H NMR (200 MHz, CDCl3): δ = 7.72-7.67 (2 H, m), 7.40-7.28 (3 H, m), 7.07 (1 H, s), 3.56 (2 H, s). 13C NMR (50 MHz, CDCl3): δ = 137.2, 130.5, 129.9, 129.4, 128.6, 128.3, 126.2, 118.8, 116.5, 52.0. MS (EI):
m/z = 158 [M+]. Anal. Calcd for C10H10N (%): C, 83.33; H, 6.94; N, 19.44. Found: C, 83.41; H, 6.88; N, 19.40.
Compound 4c: IR (KBr): νmax = 3442, 2352, 1522, 1485 cm-1. 1H NMR (200 MHz, CDCl3): δ = 7.72 (2 H, d, J = 8.0 Hz), 7.43 (2 H, d, J = 8.0 Hz), 7.10 (1 H, s), 3.62 (2 H, s). MS (EI): m/z = 192, 194 [M+]. Anal. Calcd for C10H9ClN2 (%): C, 62.34; H, 4.68; N, 14.55. Found: C, 62.41; H, 4.71; N, 14.51.
<A NAME="RD34804ST-9A">9a</A>
Larson GL.
de Kaifer CF.
Seda R.
Torres LE.
Ramirez JR.
J. Org. Chem.
1984,
49:
3385
<A NAME="RD34804ST-9B">9b</A>
Basavaiah D.
Sarma PKS.
Bhavani AKD.
J. Chem. Soc., Chem. Commun.
1994,
1091
<A NAME="RD34804ST-9C">9c</A>
Baraldi PG.
Guarneri M.
Pollini GP.
Simoni D.
Barco A.
Benetti S.
J. Chem. Soc., Perkin Trans. 1
1984,
2501
<A NAME="RD34804ST-9D">9d</A>
Tanaka K.
Yamagishi N.
Tanikaga R.
Kaji A.
Bull. Chem. Soc. Jpn.
1979,
52:
3619
<A NAME="RD34804ST-9E">9e</A>
Minami I.
Yahara M.
Shimizu I.
Tsuji J.
J. Chem. Soc., Chem. Commun.
1986,
118
<A NAME="RD34804ST-9F">9f</A>
Oda M.
Yamamura A.
Watabe T.
Chem. Lett.
1979,
8:
1427
<A NAME="RD34804ST-9G">9g</A>
Matsuda I.
Okada H.
Izumi Y.
Bull. Chem. Soc. Jpn.
1983,
56:
528
<A NAME="RD34804ST-9H">9h</A>
Boche G.
Buckl K.
Martens D.
Schneider DR.
Tetrahedron Lett.
1979,
19:
4967
<A NAME="RD34804ST-10A">10a</A>
Foucaud A.
El Guemmout F.
Bull. Chim. Soc. Fr.
1989,
403
<A NAME="RD34804ST-10B">10b</A>
Patra A.
Roy AK.
Batra S.
Bhaduri AP.
Synlett
2002,
1819