Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000083.xml
Synlett 2005(6): 1042-1043
DOI: 10.1055/s-2005-864829
DOI: 10.1055/s-2005-864829
SPOTLIGHT
© Georg Thieme Verlag Stuttgart · New YorkNickel Acetyl Acetonate [Ni(acac)2]
Further Information
Publication History
Publication Date:
23 March 2005 (online)
PDF Download(opens in new window) Permissions and Reprints(opens in new window) All articles of this category(opens in new window)
Biographical Sketches
Introduction
Nickel acetyl acetonate is also known as bis(acetylacetonato) nickel(II ). It has been used as a catalyst for oligomerization, telomerization, hydrosilylation, reduction, cross-coupling, oxidation, conjugate addition, addition to multiple bonds and rearrangement reactions. It is a pale green solid (mp = 240 °C) that is soluble in ethers and aromatic and halogenated hydrocarbons.
Preparation
Ni(acac)2 is commercially available. Alternatively, it can be prepared from potassium acetylacetonate and nickel(II ) chloride by stirring for 30 minutes at room temperature in absolute ethanol. [1]
Abstracts
| (A) Ni(acac)2-catalyzed couplings of enones, alkynes and main-group organometallic reagents generate acyclic structures in an efficient manner. Ikeda et al. produced conjugated enynes from acetylenic tin reagents. [2] [3] |
|
| (B) Ni(acac)2 is used in InI-mediated direct allylation of carbonyl compounds with allylic alcohols. [4] The reaction proceeded smoothly with catalytic amounts of Ni(acac)2 and PPh3 to give the corresponding homoallylic alcohols in high yields. [5] |
|
| (C) Intermolecular coupling of an electron-deficient olefin with a strained olefin using Ni(acac)2 and a modified chiral monodentate oxazoline provides good yields and enantioselectivity. [6] [7] |
|
| (D) Ni(acac)2-catalyzed cross-coupling between two sp3 carbon centers allows the synthesis of polyfunctional products. [8] |
|
| (E) Ni(acac)2 promotes the coupling of alkenes with aldehydes in the presence of triethylborane or diethylzinc as reducing agents. [9] Triethylborane-mediated couplings work mainly for aromatic and unsaturated aldehydes, whereas diethylzinc-promoted couplings work best for aliphatic aldehydes and ketones. The reactions proceed well in water or in alcoholic solvents. [10] |
|
| (F) Ni(acac)2-assisted coupling of 1,7-diynes with silanes produces six-membered ring products with a Z-configured vinyl silane moiety. [11] |
|
| (G) Takimoto and Mori developed the Ni(acac)2-assisted coupling of 1,3-dienes, CO2, and an organozinc reagent, allowing easy assembly of densely functionalized rings. [12] Terao et al. developed comparable multi-component coupling of two dienes, a silyl chloride, and a Grignard reagent. [13] The procedure has been extended to asymmetric variants. [14] |
|
- 1
Canoira L.Rodriguez JG. J. Heterocycl. Chem. 1985, 22: 1511 - 2a
Ikeda S.Sato Y. J. Am. Chem. Soc. 1994, 116: 5975 - 2b
Ikeda S.Kondo K.Sato Y. J. Org. Chem. 1996, 61: 8248 - 2c
Ikeda S.Miyashita H.Taniguchi M.Kondo H.Okano M.Sato Y.Odashima K. J. Am. Chem. Soc. 2002, 124: 12060 - 2d
Ikeda S.Cui DM.Sato Y. J. Org. Chem. 1994, 59: 6877 - 2e
Cui DM.Tsuzuki T.Miyake K.Ikeda S.Sato Y. Tetrahedron 1998, 54: 1063 - 3
Ikeda S.Kondo K.Sato Y. Chem. Lett. 1999, 1227 - 4
Hirashita T.Kambe S.Tsuji H.Omori H.Araki S. J. Org. Chem. 2004, 69: 5054 - 5
Loh TP.Song HY.Zhou Y. Org. Lett. 2002, 4: 2715 - 6
Cui DM.Yamamoto H.Ikeda S.Hatano K.Sato Y. J. Org. Chem. 1998, 63: 2782 - 7
Ikeda S.Cui DM.Sato Y. J. Am. Chem. Soc. 1999, 121: 4712 - 8
Devasagayaraj A.Studemann T.Knochel P. Angew. Chem., Int. Ed. Engl. 1995, 34: 2723 - 9
Kimura M.Fujimatsu H.Ezoe A.Shibata K.Shimizu M.Matsumoto S.Tamaru Y. Angew. Chem. Int. Ed. 1999, 38: 397 - 10
Kimura M.Ezoe A.Tanaka S.Tamaru Y. Angew. Chem. Int. Ed. 2001, 40: 3600 - 11a
Suginome M.Matsuda T.Ito Y. Organometallics 1998, 17: 5233 - 11b
Montgomery J. Angew. Chem. Int. Ed. 2004, 43: 3890 - 12
Takimoto M.Mori M. J. Am. Chem. Soc. 2002, 124: 10008 - 13
Terao J.Matsuo S.Shibata K.Tamaru Y. Angew. Chem. Int. Ed. 1999, 38: 3386 - 14
Takimoto M.Nakamura Y.Kimura K.Mori M. J. Am. Chem. Soc. 2004, 126: 5956
References
- 1
Canoira L.Rodriguez JG. J. Heterocycl. Chem. 1985, 22: 1511 - 2a
Ikeda S.Sato Y. J. Am. Chem. Soc. 1994, 116: 5975 - 2b
Ikeda S.Kondo K.Sato Y. J. Org. Chem. 1996, 61: 8248 - 2c
Ikeda S.Miyashita H.Taniguchi M.Kondo H.Okano M.Sato Y.Odashima K. J. Am. Chem. Soc. 2002, 124: 12060 - 2d
Ikeda S.Cui DM.Sato Y. J. Org. Chem. 1994, 59: 6877 - 2e
Cui DM.Tsuzuki T.Miyake K.Ikeda S.Sato Y. Tetrahedron 1998, 54: 1063 - 3
Ikeda S.Kondo K.Sato Y. Chem. Lett. 1999, 1227 - 4
Hirashita T.Kambe S.Tsuji H.Omori H.Araki S. J. Org. Chem. 2004, 69: 5054 - 5
Loh TP.Song HY.Zhou Y. Org. Lett. 2002, 4: 2715 - 6
Cui DM.Yamamoto H.Ikeda S.Hatano K.Sato Y. J. Org. Chem. 1998, 63: 2782 - 7
Ikeda S.Cui DM.Sato Y. J. Am. Chem. Soc. 1999, 121: 4712 - 8
Devasagayaraj A.Studemann T.Knochel P. Angew. Chem., Int. Ed. Engl. 1995, 34: 2723 - 9
Kimura M.Fujimatsu H.Ezoe A.Shibata K.Shimizu M.Matsumoto S.Tamaru Y. Angew. Chem. Int. Ed. 1999, 38: 397 - 10
Kimura M.Ezoe A.Tanaka S.Tamaru Y. Angew. Chem. Int. Ed. 2001, 40: 3600 - 11a
Suginome M.Matsuda T.Ito Y. Organometallics 1998, 17: 5233 - 11b
Montgomery J. Angew. Chem. Int. Ed. 2004, 43: 3890 - 12
Takimoto M.Mori M. J. Am. Chem. Soc. 2002, 124: 10008 - 13
Terao J.Matsuo S.Shibata K.Tamaru Y. Angew. Chem. Int. Ed. 1999, 38: 3386 - 14
Takimoto M.Nakamura Y.Kimura K.Mori M. J. Am. Chem. Soc. 2004, 126: 5956