Zusammenfassung
Die transkranielle Magnetstimulation (TMS) ist eine in den Neurowissenschaften inzwischen
weit verbreitete Methode zur Untersuchung neurophysiologischer Prozesse sowie des
Zusammenhangs zwischen fokaler Gehirnaktivität und Verhalten. In der folgenden Übersichtsarbeit
beschreiben wir zunächst kurz den physikalischen Hintergrund der TMS. Der Hauptteil
der Arbeit befasst sich mit den verschiedenen Anwendungsmöglichkeiten einer Kombination
aus TMS und funktioneller zerebraler Bildgebung. Die funktionelle Bildgebung kann
zum einen genutzt werden, um eine genaue Lokalisation der individuellen TMS-Stimulationsorte
zu erhalten. Hierzu haben sich kommerziell erhältliche Neuronavigationsverfahren etabliert
(www.brainsight.com; www.nexstim.com). Alternativ kann mit computergestützten Verfahren zur Projektion von Gehirnarealen
auf die Kopfoberfläche eine hohe Genauigkeit des Stimulationsortes erzielt werden
(http://neurologie.uni-muenster.de/T2T/index.html). Mit der TMS kann dann bestimmt werden, welche funktionelle Relevanz eine regionale
kortikale Aktivierung für die Durchführung einer bestimmten Aufgabe hat. In einem
weiteren Abschnitt wird beschrieben, wie die funktionelle Bildgebung zeitnah zur Darstellung
der durch die TMS induzierten Blutfluss-/Erregbarkeitsänderungen genutzt werden kann.
Dies kann sowohl nach der eigentlichen TMS-Stimulation erfolgen als auch (technisch
jedoch erheblich aufwändiger) während der Stimulation. Abschließend erfolgt eine Zusammenfassung,
wie die Kombination aus TMS und funktioneller Bildgebung zum Verständnis kortikaler
Plastizität und therapeutischer Effekte der TMS beitragen kann.
Abstract
Transcranial magnetic stimulation (TMS) is an important tool in neuroscience for the
study of neurophysiology and the relationship between focal brain activity and behaviour.
In this contribution, we give first a brief description of the physical background
of TMS, and then provide an overview of the combined application of TMS and functional
imaging. Initially we describe how imaging can be used to determine the exact localisation
for TMS in each individual subject, using commercially available neuronavigational
systems (www.brainsight.com; www.nexstim.com) or computer-assisted tools that project brain areas onto the scalp with high precision
(http://neurologie.uni-muenster.de/T2T/index.html). TMS is subsequently applied to investigate the functional relevance of the cortical
activation in a given task, as assessed by functional imaging. Next, we discuss how
functional imaging can be used to visualise TMS-induced changes in blood flow and
cortical activity, either at the end of stimulation or, technically more challenging,
during stimulation. Finally, we sum up how the combined use of TMS and functional
imaging may contribute to the understanding of plasticity in the human cortex and
to the therapeutic effects of TMS in various neuropsychiatric disorders.
Key words
Magnetic stimulation - functional imaging - brain - cortical plasticity - therapy
Literatur
- 1
Amedi A, Flöel A, Knecht S, Zohary E, Cohen L G.
Transcranial magnetic stimulation of the occipital pole interferes with verbal processing
in blind subjects.
Nat Neurosci.
2004;
7
1266-1270
- 2
Amedi A, Raz N, Pianka P, Malach R, Zohary E.
Early „visual” cortex activation correlates with superior verbal memory performance
in the blind.
Nat Neurosci.
2003;
6
758-766
- 3
Barker A T, Jalinous R, Freeston I L.
Non-invasive magnetic stimulation of human motor cortex.
Lancet.
1985;
1
1106-1107
- 4
Bohning D E, He L, George M S, Epstein C M.
Deconvolution of transcranial magnetic stimulation (TMS) maps.
J Neural Transm.
2001;
108
35-52
- 5
Bohning D E, Pecheny A P, Epstein C M, Speer A M, Vincent D J, Dannels W, George M S.
Mapping transcranial magnetic stimulation (TMS) fields in vivo with MRI.
Neuroreport.
1997;
8
2535-2538
- 6
Bohning D E, Shastri A, McConnell K A, Nahas Z, Lorberbaum J P, Roberts D R, Teneback C,
Vincent D J, George M S.
A combined TMS/fMRI study of intensity-dependent TMS over motor cortex.
Biol Psychiatry.
1999;
45
385-394
- 7
Buckner R L, Raichle M E, Petersen S E.
Dissociation of human prefrontal cortical areas across different speech production
tasks and gender groups.
J Neurophysiol.
1995;
74
2163-2173
- 8
Cappa S F, Sandrini M, Rossini P M, Sosta K, Miniussi C.
The role of the left frontal lobe in action naming: rTMS evidence.
Neurology.
2002;
59
720-723
- 9
Chen R, Classen J, Gerloff C, Celnik P, Wassermann E M, Hallett M, Cohen L G.
Depression of motor cortex excitability by low-frequency transcranial magnetic stimulation.
Neurology.
1997;
48
1398-1403
- 10
Cohen L G, Roth B J, Nilsson J, Dang N, Panizza M, Bandinelli S, Friauf W, Hallett M.
Effects of coil design on delivery of focal magnetic stimulation. Technical considerations.
Electroencephalogr Clin Neurophysiol.
1990;
75
350-357
- 11
Deppe M, Knecht S, Papke K, Lohmann H, Fleischer H, Heindel W, Ringelstein E B, Henningsen H.
Assessment of hemispheric language lateralization: a comparison between fMRI and fTCD.
J Cereb Blood Flow Metab.
2000;
20
263-268
- 12
Drager B, Breitenstein C, Helmke U, Kamping S, Knecht S.
Specific and nonspecific effects of transcranial magnetic stimulation on picture-word
verification.
Eur J Neurosci.
2004;
20
1681-1687
- 13
Dressler D, Voth E, Feldmann M, Benecke R.
Safety aspects of transcranial brain stimulation in man tested by single photon emission-computed
tomography.
Neurosci Lett.
1990;
119
153-155
- 14
Duning T, Rogalewski A, Steinstraeter O, Kugel H, Jansen A, Breitenstein C, Knecht S.
Repetitive TMS temporarily alters brain diffusion.
Neurology.
2004;
62
2144; author reply 2144-2145
- 15
Epstein C M, Lah J J, Meador K, Weissman J D, Gaitan L E, Dihenia B.
Optimum stimulus parameters for lateralized suppression of speech with magnetic brain
stimulation.
Neurology.
1996;
47
1590-1593
- 16
Epstein C M, Meador K J, Loring D W, Wright R J, Weissman J D, Sheppard S, Lah J J,
Puhalovich F, Gaitan L, Davey K R.
Localization and characterization of speech arrest during transcranial magnetic stimulation.
Clin Neurophysiol.
1999;
110
1073-1079
- 17
Epstein C M, Schwartzberg D G, Davey K R, Sudderth D B.
Localizing the site of magnetic brain stimulation in humans.
Neurology.
1990;
40
666-670
- 18
Ettinger G J, Leventon M E, Grimson W E, Kikinis R, Gugino L, Cote W, Sprung L, Aglio L,
Shenton M E, Potts G, Hernandez V L, Alexander E.
Experimentation with a transcranial magnetic stimulation system for functional brain
mapping.
Med Image Anal.
1998;
2
133-142
- 19
Flitman S S, Grafman J, Wassermann E M, Cooper V, O'Grady J, Pascual-Leone A, Hallett M.
Linguistic processing during repetitive transcranial magnetic stimulation.
Neurology.
1998;
50
175-181
- 20
Flöel A, Breitenstein C, Knecht S.
The role of the left frontal lobe in action naming: rTMS evidence.
Neurology.
2003;
60
1052; author reply 1052
- 21
Flöel A, Poeppel D, Buffalo E A, Braun A, Wu C W, Seo H J, Stefan K, Knecht S, Cohen L G.
Prefrontal cortex asymmetry for memory encoding of words and abstract shapes.
Cereb Cortex.
2004;
14
404-409
- 22
Fox P, Ingham R, George M S, Mayberg H, Ingham J, Roby J, Martin C, Jerabek P.
Imaging human intra-cerebral connectivity by PET during TMS.
Neuroreport.
1997;
8
2787-2791
- 23
Hess G, Donoghue J P.
Long-term potentiation and long-term depression of horizontal connections in rat motor
cortex.
Acta Neurobiol Exp (Wars).
1996;
56
397-405
- 24
Huang Y Z, Edwards M J, Rounis E, Bhatia K P, Rothwell J C.
Theta burst stimulation of the human motor cortex.
Neuron.
2005;
45
201-206
- 25
Ilmoniemi R J, Virtanen J, Ruohonen J, Karhu J, Aronen H J, Naatanen R, Katila T.
Neuronal responses to magnetic stimulation reveal cortical reactivity and connectivity.
Neuroreport.
1997;
8
3537-3540
- 26
Iriki A, Pavlides C, Keller A, Asanuma H.
Long-term potentiation in the motor cortex.
Science.
1989;
245
1385-1387
- 27
Knecht S, Flöel A, Drager B, Breitenstein C, Sommer J, Henningsen H, Ringelstein E B,
Pascual-Leone A.
Degree of language lateralization determines susceptibility to unilateral brain lesions.
Nat Neurosci.
2002;
5
695-699
- 28
Krings T, Chiappa K H, Foltys H, Reinges M H, Cosgrove G R, Thron A.
Introducing navigated transcranial magnetic stimulation as a refined brain mapping
methodology.
Neurosurg Rev.
2001;
24
171-179
- 29
Krings T, Foltys H, Reinges M H, Kemeny S, Rohde V, Spetzger U, Gilsbach J M, Thron A.
Navigated transcranial magnetic stimulation for presurgical planning - correlation
with functional MRI.
Minim Invasive Neurosurg.
2001;
44
234-239
- 30
Kujirai T, Caramia M D, Rothwell J C, Day B L, Thompson P D, Ferbert A, Wroe S, Asselman P,
Marsden C D.
Corticocortical inhibition in human motor cortex.
J Physiol.
1993;
471
501-519
- 31
Li X, Nahas Z, Lomarev M, Denslow S, Shastri A, Bohning D E, George M S.
Prefrontal cortex transcranial magnetic stimulation does not change local diffusion:
a magnetic resonance imaging study in patients with depression.
Cogn Behav Neurol.
2003;
16
128-135
- 32
Maeda F, Gangitano M, Thall M, Pascual-Leone A.
Inter- and intra-individual variability of paired-pulse curves with transcranial magnetic
stimulation (TMS).
Clin Neurophysiol.
2002;
113
376-382
- 33
Maeda F, Keenan J P, Tormos J M, Topka H, Pascual-Leone A.
Interindividual variability of the modulatory effects of repetitive transcranial magnetic
stimulation on cortical excitability.
Exp Brain Res.
2000;
133
425-430
- 34
Maeda F, Keenan J P, Tormos J M, Topka H, Pascual-Leone A.
Modulation of corticospinal excitability by repetitive transcranial magnetic stimulation.
Clin Neurophysiol.
2000;
111
800-805
- 35
Mottaghy F M, Gangitano M, Horkan C, Chen Y, Pascual-Leone A, Schlaug G.
Repetitive TMS temporarily alters brain diffusion.
Neurology.
2003;
60
1539-1541
- 36
Mottaghy F M, Gangitano M, Krause B J, Pascual-Leone A.
Chronometry of parietal and prefrontal activations in verbal working memory revealed
by transcranial magnetic stimulation.
Neuroimage.
2003;
18
565-575
- 37
Mottaghy F M, Hungs M, Brugmann M, Sparing R, Boroojerdi B, Foltys H, Huber W, Topper R.
Facilitation of picture naming after repetitive transcranial magnetic stimulation.
Neurology.
1999;
53
1806-1812
- 38
Mottaghy F M, Keller C E, Gangitano M, Ly J, Thall M, Parker J A, Pascual-Leone A.
Correlation of cerebral blood flow and treatment effects of repetitive transcranial
magnetic stimulation in depressed patients.
Psychiatry Res.
2002;
115
1-14
- 39
Mottaghy F M, Krause B J, Kemna L J, Topper R, Tellmann L, Beu M, Pascual-Leone A,
Muller-Gartner H W.
Modulation of the neuronal circuitry subserving working memory in healthy human subjects
by repetitive transcranial magnetic stimulation.
Neurosci Lett.
2000;
280
167-170
- 40
Mottaghy F M, Pascual-Leone A, Kemna L J, Topper R, Herzog H, Muller-Gartner H W,
Krause B J.
Modulation of a brain-behavior relationship in verbal working memory by rTMS.
Brain Res Cogn Brain Res.
2003;
15
241-249
- 41
Muellbacher W, Ziemann U, Boroojerdi B, Hallett M.
Effects of low-frequency transcranial magnetic stimulation on motor excitability and
basic motor behavior.
Clin Neurophysiol.
2000;
111
1002-1007
- 42
Pascual-Leone A, Valls-Sole J, Wassermann E M, Hallett M.
Responses to rapid-rate transcranial magnetic stimulation of the human motor cortex.
Brain.
1994;
117 (Pt 4)
847-858
- 43
Paus T.
Imaging the brain before, during, and after transcranial magnetic stimulation.
Neuropsychologia.
1999;
37
219-224
- 44
Paus T, Jech R, Thompson C J, Comeau R, Peters T, Evans A C.
Transcranial magnetic stimulation during positron emission tomography: a new method
for studying connectivity of the human cerebral cortex.
J Neurosci.
1997;
17
3178-3184
- 45
Paus T, Jech R, Thompson C J, Comeau R, Peters T, Evans A C.
Dose-dependent reduction of cerebral blood flow during rapid-rate transcranial magnetic
stimulation of the human sensorimotor cortex.
J Neurophysiol.
1998;
79
1102-1107
- 46
Rossi S, Cappa S F, Babiloni C, Pasqualetti P, Miniussi C, Carducci F, Babiloni F,
Rossini P M.
Prefrontal [correction of Prefontal] cortex in long-term memory: an „interference”
approach using magnetic stimulation.
Nat Neurosci.
2001;
4
948-952
- 47
Rossi S, Miniussi C, Pasqualetti P, Babiloni C, Rossini P M, Cappa S F.
Age-related functional changes of prefrontal cortex in long-term memory: a repetitive
transcranial magnetic stimulation study.
J Neurosci.
2004;
24
7939-7944
- 48
Rothwell J, Burke D, Hicks R, Stephen J, Woodforth I, Crawford M.
Transcranial electrical stimulation of the motor cortex in man: further evidence for
the site of activation.
J Physiol.
1994;
481 (Pt 1)
243-250
- 49
Rudiak D, Marg E.
Finding the depth of magnetic brain stimulation: a re-evaluation.
Electroencephalogr Clin Neurophysiol.
1994;
93
358-371
- 50
Sack A T, Hubl D, Prvulovic D, Formisano E, Jandl M, Zanella F E, Maurer K, Goebel R,
Dierks T, Linden D E.
The experimental combination of rTMS and fMRI reveals the functional relevance of
parietal cortex for visuospatial functions.
Brain Res Cogn Brain Res.
2002;
13
85-93
- 51
Sack A T, Sperling J M, Prvulovic D, Formisano E, Goebel R, Salle F Di, Dierks T,
Linden D E.
Tracking the mind's image in the brain II: transcranial magnetic stimulation reveals
parietal asymmetry in visuospatial imagery.
Neuron.
2002;
35
195-204
- 52
Saypol J M, Roth B J, Cohen L G, Hallett M.
A theoretical comparison of electric and magnetic stimulation of the brain.
Ann Biomed Eng.
1991;
19
317-328
- 53
Schnitzler A, Benecke R.
The silent period after transcranial magnetic stimulation is of exclusive cortical
origin: evidence from isolated cortical ischemic lesions in man.
Neurosci Lett.
1994;
180
41-45
- 54
Shajahan P M, Glabus M F, Steele J D, Doris A B, Anderson K, Jenkins J A, Gooding P A,
Ebmeier K P.
Left dorso-lateral repetitive transcranial magnetic stimulation affects cortical excitability
and functional connectivity, but does not impair cognition in major depression.
Prog Neuropsychopharmacol Biol Psychiatry.
2002;
26
945-954
- 55
Shastri A, George M S, Bohning D E.
Performance of a system for interleaving transcranial magnetic stimulation with steady-state
magnetic resonance imaging.
Electroencephalogr Clin Neurophysiol.
1999;
51, Suppl
55-64
- 56
Siebner H R, Rothwell J.
Transcranial magnetic stimulation: new insights into representational cortical plasticity.
Exp Brain Res.
2003;
148
1-16
- 57
Singh K D, Hamdy S, Aziz Q, Thompson D G.
Topographic mapping of trans-cranial magnetic stimulation data on surface rendered
MR images of the brain.
Electroencephalogr Clin Neurophysiol.
1997;
105
345-351
- 58
Singh K D, Holliday I E, Furlong P L, Harding G F.
Evaluation of MRI-MEG/EEG co-registration strategies using Monte Carlo simulation.
Electroencephalogr Clin Neurophysiol.
1997;
102
81-85
- 59
Strafella A P, Paus T, Barrett J, Dagher A.
Repetitive transcranial magnetic stimulation of the human prefrontal cortex induces
dopamine release in the caudate nucleus.
J Neurosci.
2001;
21
RC157
- 60
Strens L H, Oliviero A, Bloem B R, Gerschlager W, Rothwell J C, Brown P.
The effects of subthreshold 1 Hz repetitive TMS on cortico-cortical and interhemispheric
coherence.
Clin Neurophysiol.
2002;
113
1279-1285
- 61
Teneback C C, Nahas Z, Speer A M, Molloy M, Stallings L E, Spicer K M, Risch S C,
George M S.
Changes in prefrontal cortex and paralimbic activity in depression following two weeks
of daily left prefrontal TMS.
J Neuropsychiatry Clin Neurosci.
1999;
11
426-435
- 62
Triggs W J, McCoy K J, Greer R, Rossi F, Bowers D, Kortenkamp S, Nadeau S E, Heilman K M,
Goodman W K.
Effects of left frontal transcranial magnetic stimulation on depressed mood, cognition,
and corticomotor threshold.
Biol Psychiatry.
1999;
45
1440-1446
- 63
Vickery R M, Bindman L J.
Long-lasting decreases of AMPA responses following postsynaptic activity in single
hippocampal neurons.
Synapse.
1997;
25
103-106
- 64
Weiss S R, Li X L, Rosen J B, Li H, Heynen T, Post R M.
Quenching: inhibition of development and expression of amygdala kindled seizures with
low frequency stimulation.
Neuroreport.
1995;
6
2171-2176
Agnes Flöel
Klinik und Poliklinik für Neurologie
Albert-Schweitzer-Straße 33
48129 Münster
Phone: 0251/8349970
Fax: 0251/8348181
Email: floeel@uni-muenster.de