ABSTRACT
The release of nucleotides in extracellular fluids can result from cell necrosis,
exocytosis of secretory granules (such as platelet dense granules), or efflux through
membrane channels. In addition, recent evidence suggests that vesicular trafficking
is an important pathway of nucleotide release. Once in the extracellular fluids, they
are rapidly degraded by ectonucleotidases, such as CD39, that play a key role in neutralizing
the platelet aggregatory action of adenosine diphosphate (ADP), and act on two families
of receptors: the ionotropic P2X receptors and the G-protein-coupled P2Y receptors.
The family of P2X receptors encompasses seven genes. Currently, there are eight genuine
P2Y receptors that can be subdivided into two structurally distinct subfamilies. Whereas
P2X receptors are receptors of ATP, the different P2Y receptors are activated by distinct
nucleotides, diphosphates or triphosphates, or purines or pyrimidines, some of them
being conjugated to sugars. The study of knockout mice has demonstrated that P2X receptors
play important roles in the neurogenic control of smooth muscle contraction, in pain
and visceral perception, and in macrophage functions. The phenotype of P2Y null mice
so far is more restricted: inhibition of platelet aggregation to ADP and increased
bleeding time in P2Y1
-/- and P2Y12
-/- mice and lack of epithelial responsiveness to nucleotides in airways (P2Y2
-/-) and intestine (P2Y4
0/-).
KEYWORDS
Nucleotides - ADP - P2X receptors - P2Y receptors - platelet aggregation
REFERENCES
- 1
Zhang M, Zhong H, Vollmer C, Nurse C A.
Co-release of ATP and ACh-mediates hypoxic signalling at rat carotid body chemoreceptors.
J Physiol.
2000;
525
143-158
- 2
Coco S, Calegari F, Pravettoni E et al..
Storage and release of ATP from astrocytes in culture.
J Biol Chem.
2003;
278
1354-1362
- 3
Beigi R, Kobatake E, Aizawa M, Dubyak G R.
Detection of local ATP release from activated platelets using cell surface-attached
firefly luciferase.
Am J Physiol.
1999;
276
C267-C278
- 4
Lazarowski E R, Harden T K.
Quantitation of extracellular UTP using a sensitive enzymatic assay.
Br J Pharmacol.
1999;
127
1272-1278
- 5
Grierson J P, Meldolesi J.
Shear stress-induced [Ca2+]i transients and oscillations in mouse fibroblasts are mediated by endogenously release
ATP.
J Biol Chem.
1995;
270
4451-4456
- 6
Ferguson D R, Kennedy I, Burton T J.
ATP is released from rabbit urinary bladder epithelial cells by hydrostatic pressure
changes-a possible sensory mechanism?.
J Physiol.
1997;
505
503-511
- 7
Knight G E, Bodin P, De Groat W C, Burnstock G.
ATP is released from guinea pig ureter epithelium on distension.
Am J Physiol Renal Physiol.
2002;
282
F281-F288
- 8
Mitchell C H, Carre D A, McGlinn A M, Stone R A.
A release mechanism for stored ATP in ocular ciliary epithelial cells.
Proc Natl Acad Sci USA.
1998;
95
7174-7178
- 9
Lazarowski E R, Homolya L, Boucher R C, Harden T K.
Direct demonstration of mechanically induced release of cellular UTP and its implication
for uridine nucleotide receptor activation.
J Biol Chem.
1997;
272
24348-24354
- 10
Burnstock G.
Purine-mediated signalling in pain and visceral perception.
Trends Pharmacol Sci.
2001;
22
182-188
- 11
Homolya L, Steinberg T H, Boucher R C.
Cell to cell communication in response to mechanical stress via bilateral release
of ATP and UTP in polarized epithelial.
J Cell Biol.
2000;
150
1349-1359
- 12
Gerasimovskaya E V, Ahmad S, White C W et al..
Extracellular ATP is an autocrine/paracrine regulator of hypoxia-induced adventitial
fibroblast growth.
J Biol Chem.
2002;
277
44638-44650
- 13
Gonzalez-Alonso J, Olsen D B, Saltin B.
Erythrocyte and the regulation of human skeletal muscle blood flow and oxygen delivery:
role of circulating ATP.
Circ Res.
2002;
91
1046-1055
- 14
Sprague R S, Stephenson A H, Ellsworth M L, Keller C, Lonigro A J.
Impaired release of ATP from red blood cells of humans with primary pulmonary hypertension.
Exp Biol Med (Maywood).
2001;
226
434-439
- 15
McNamara N, Khong A, McKemy D et al..
ATP transduces signals from ASGM1, a glycolipid that functions as a bacterial receptor.
Proc Natl Acad Sci USA.
2001;
98
9086-9091
- 16
Crane J K, Olson R A, Jones H M, Duffey M E.
Release of ATP during host cell killing by enteropathogenic E. coli and its role as a secretory mediator.
Am J Physiol Gastrointest Liver Physiol.
2002;
283
G74-G86
- 17
Tran Van Nhieu G, Clair C, Bruzzone R et al..
Connexin-dependent inter-cellular communication increases invasion and dissemination
of Shigella in epithelial cells.
Nat Cell Biol.
2003;
5
720-726
- 18
Schneider S W, Egan M E, Jena B P et al..
Continuous detection of extracellular ATP on living cells by using atomic force microscopy.
Proc Natl Acad Sci USA.
1999;
96
12180-12185
- 19
Watt W C, Lazarowski E R, Boucher R C.
Cystic fibrosis transmembrane regulator-independent release of ATP.
J Biol Chem.
1998;
273
14053-14058
- 20
Braunstein G M, Roman R M, Clancy J P et al..
Cystic fibrosis transmembrane conductance regulator facilitates ATP release by stimulating
a separate ATP release channel for autocrine control of cell volume regulation.
J Biol Chem.
2001;
276
6621-6630
- 21
Roman R M, Lomri N, Braunstein G et al..
Evidence for multidrug resistance-1 P-glycoprotein-dependent regulation of cellular
ATP permeability.
J Membr Biol.
2001;
183
165-173
- 22
Bodas E, Aleu J, Pujol G, Martin-Satué M, Marsal J.
ATP crossing the cell plasma membrane generates an ionic current in Xenopus oocytes.
J Biol Chem.
2000;
275
20268-20273
- 23
Kalinowski L, Dobrucki L W, Szczepanska-Konkel M et al..
Third-generation β-blockers stimulate nitric oxide release form endothelial cells
through ATP efflux. A novel mechanism for antihypertensive action.
Circulation.
2003;
107
2747-2752
- 24
Bell P D, Lapointe J Y, Sabirov R et al..
Macula densa cell signaling involves ATP release through a maxi anion channel.
Proc Natl Acad Sci USA.
2003;
100
4322-4327
- 25
Sun D, Samuelson L C, Yang T et al..
Mediation of tubuloglomerular feedback by adenosine: evidence from mice lacking adenosine
1 receptors.
Proc Natl Acad Sci USA.
2001;
98
9983-9988
- 26
Inscho E W, Cook A K, Imig J D, Vial C, Evans R J.
Physiological role for P2X1 receptors in renal microvascular autoregulatory behavior.
J Clin Invest.
2003;
112
1895-1905
- 27
Cotrina M L, Lin J HC, Alves-Rodrigues A et al..
Connexins regulate calcium signaling by controlling ATP release.
Proc Natl Acad Sci USA.
1998;
95
15735-15740
- 28
Lazarowski E R, Shea D A, Boucher R C, Kendall Harden T.
Release of cellular UDP-glucose as a potential extracellular signaling molecule.
Mol Pharmacol.
2003;
63
1190-1197
- 29
Zhong X, Malhotra R, Guidotti G.
ATP uptake in the golgi and extracellular release require Mcd4 protein and the vacuolar
H+-ATPase.
J Biol Chem.
2003;
278
33436-33444
- 30
Maroto R, Hamill O P.
Brefeldin a block of integrin-dependent mechanosensitive ATP release from Xenopus oocytes reveals a novel mechanism of mechanotransduction.
J Biol Chem.
2001;
276
23867-23872
- 31
Khakh B S, Burnstock G, Kennedy C et al..
International union of pharmacology. XXIV. Current status of the nomenclature and
properties of P2X receptors and their subunits.
Pharmacol Rev.
2001;
53
107-118
- 32
North R A.
Molecular physiology of P2X receptors.
Physiol Rev.
2002;
82
1013-1067
- 33
Valera S, Hussy N, Evans R J et al..
A new class of ligand-gated ion channel defined by P2X receptor for extracellular ATP.
Nature.
1994;
371
516-519
- 34
Lynch K J, Touma E, Niforatos W et al..
Molecular and functional characterization of human P2X2 receptors.
Mol Pharmacol.
1999;
56
1171-1181
- 35
Garcia-Guzman M, Stuhmer W, Soto F.
Molecular characterization and pharmacological properties of the human P2X3 purinoceptor.
Brain Res Mol Brain Res.
1997;
47
59-66
- 36
Garcia-Guzan M, Soto F, Gomez-Hernandez J M, Lund P E, Stuhmer M.
Characterization of recombinant human P2X4 receptor reveals pharmacological differences to the rat receptor.
Mol Pharmacol.
1997;
51
109-118
- 37
Le K T, Paquet M, Nouel D, Babinski K, Seguela P.
Primary structure and expression of a naturally truncated human P2X ATP receptor subunit
from brain and immune system.
FEBS Lett.
1997;
418
195-199
- 38
Urano T, Nishimori H, Han H et al..
Cloning of P2XM, a novel human P2X receptor gene regulated by p53.
Cancer Res.
1997;
57
3281-3287
- 39
Rassendren F, Buell G N, Virginio C et al..
The permeabilizing ATP receptor, P2X7. Cloning and expression of a human cDNA.
J Biol Chem.
1997;
272
5482-5486
- 40
Nicke A, Baumert H G, Rettinger J et al..
P2X1 and P2X3 receptors form stable trimers: a novel structural motif of ligand-gated ion channels.
EMBO J.
1998;
17
3016-3028
- 41
Torres G E, Egan T M, Voigt M M.
Hetero-oligomeric assembly of P2X receptor subunits. Specificities exist with regard
to possible partners.
J Biol Chem.
1999;
274
6653-6659
- 42
Evans R J, Lewis C, Virginio C et al..
Ionic permeability of, and divalent cation effects on, two ATP-gated cation channels
(P2X receptors) expressed in mammalian cells.
J Physiol.
1996;
497
413-422
- 43
Ding S, Sachs F.
Single channel properties of P2X2 purinoceptors.
J Gen Physiol.
1999;
113
695-720
- 44
Lewis C, Neldhart S, Holy C et al..
Coexpression of P2X2 and P2X3 receptor subunits can account for ATP-gated currents in sensory neurons.
Nature.
1995;
377
432-435
- 45
Virginio C, MacKenzie A, North R A, Surprenant A.
Kinetics of cell lysis, dye uptake and permeability changes in cells expressing the
rat P2X7 receptor.
J Physiol.
1999;
519
335-346
- 46
Kim M, Jiang L H, Wilson H L, North R A, Surprenant A.
Proteomic and functional evidence for a P2X7 receptor signalling complex.
EMBO J.
2001;
20
6347-6358
- 47
Denlinger L C, Fisette P L, Sommer J A et al..
Cutting edge: the nucleotide receptor P2X7 contains multiple protein- and lipid- interaction motifs including a potential binding
site for bacterial lipopolysaccharide.
J Immunol.
2001;
167
1871-1876
- 48
Mulryan K, Gitterman D P, Lewis C J et al..
Reduced vas deferens contraction and male infertility in mice lacking P2X1 receptors.
Nature.
2000;
403
86-89
- 49
Vial C, Evans R J.
P2X1 receptor-deficient mice establish the native P2X receptor and a P2Y6-like receptor in arteries.
Mol Pharmacol.
2002;
62
1438-1445
- 50
Calvert J A, Evans R J.
Heterogeneity of P2X receptors in sympathetic neurons: contribution of neuronal P2X1 receptors revealed using knockout mice.
Mol Pharmacol.
2004;
65
139-148
- 51
Rong W, Gourine A V, Cockayne D A et al..
Pivotal role of nucleotide P2X2 receptor subunit of the ATP-gated ion channel mediating ventilatory responses to
hypoxia.
J Neurosci.
2003;
23
11315-11321
- 52
Cockayne D A, Hamilton S G, Zhu Q M et al..
Urinary bladder hyporeflexia and reduced pain-related behaviour in P2X3- deficient mice.
Nature.
2000;
407
1011-1015
- 53
Souslova V, Cesare P, Ding Y et al..
Warm-coding deficits and aberrant inflammatory pain in mice lacking P2X3 receptors.
Nature.
2000;
407
1015-1017
- 54
Jarvis M F, Burgard E C, McGaraughty S et al..
A-317491, a novel potent and selective non-nucleotide antagonist of P2X3 and P2X2/3 receptors, reduces chronic inflammatory and neuropathic pain in the rat.
Proc Natl Acad Sci USA.
2002;
99
17179-17184
- 55
Tsuda M, Shigemoto-Mogami Y, Koizumi S et al..
P2X4 receptors induced in spinal microglia gate tactile allodynia after nerve injury.
Nature.
2003;
424
778-783
- 56
Fairbairn I P, Stober C B, Dinakantha S, Kumararatne S, Lammas D A.
ATP-mediated killing of intracellular mycobacteria by macrophages is a P2X7-dependent process inducing bacterial death by phagosome-lysosome fusion.
J Immunol.
2001;
167
3300-3307
- 57
Solle M, Labasi J, Perregaux D G et al..
Altered cytokine production in mice lacking P2X7 receptors.
J Biol Chem.
2001;
276
125-132
- 58
Saunders B M, Fernando S L, Sluyter R, Britton W J, Wiley J S.
A loss-of-function polymorphism in the human P2X7 receptor abolishes ATP-mediated killing of mycobacteria.
J Immunol.
2003;
171
5442-5446
- 59
Wiley J S, Dai-Ung L P, Li C et al..
An Ile-568 to Asn polymorphism prevents normal trafficking and function of the human
P2X7 receptor.
J Biol Chem.
2003;
278
17108-17113
- 60
Li C M, Campbell S J, Kumararatne D S et al..
Association of a polymorphism in the P2X7 gene with tuberculosis in a gambian population.
J Infect Dis.
2002;
186
1458-1462
- 61
Ke H Z, Qi H, Weidema A F et al..
Deletion of the P2X7 nucleotide receptor reveals its regulator roles in bone formation and resorption.
Mol Endocrinol.
2003;
17
1356-1367
- 62
Abbrachio M P, Boeynaems J M, Barnard E A et al..
Characterization of the UDP-glucose receptor (re-named here the P2Y14 receptor) adds diversity to the P2Y receptor family.
Trends Pharmacol Sci.
2003;
24
52-55
- 63
Herold C L, Qi A D, Harden T K, Nicholas R A.
Agonist versus antagonist action of ATP at the P2Y4 receptor is determined by the second extracellular loop.
J Biol Chem.
2004;
279
11456-11464
- 64
Leon C, Vial C, Cazenave J P, Gachet C.
Cloning and sequencing of a human cDNA encoding endothelial P2Y1 receptor.
Gene.
1996;
171
295-297
- 65
Parr C E, Sullivan D M, Paradiso A M et al..
Cloning and expression of a human P2U nucleotide receptor, a target for cystic fibrosis pharmacotherapy.
Proc Natl Acad Sci USA.
1994;
91
3275-3279
- 66
Communi D, Pirotton S, Parmentier M, Boeynaems J M.
Cloning and functional expression of a human uridine nucleotide receptor.
J Biol Chem.
1995;
270
30849-30852
- 67
Communi D, Parmentier M, Boeynaems J M.
Cloning, functional expression and tissue distribution of the human P2Y6 receptor.
Biochem Biophys Res Commun.
1996;
222
303-308
- 68
Communi D, Govaerts C, Parmentier M, Boeynaems J M.
Cloning of a human purinergic receptor coupled to phospholipase C and adenylyl cyclase.
J Biol Chem.
1997;
272
31969-31973
- 69
Hollopeter G, Jantzen H M, Vincent D et al..
Identification of the platelet ADP receptor targeted by antithrombotic drugs.
Nature.
2001;
409
202-206
- 70
Zhang F L, Luo L, Gustafson E et al..
ADP is the cognate ligand for the orphan G-protein coupled receptor SP1999.
J Biol Chem.
2001;
276
8608-8615
- 71
Communi D, Gonzalez N S, Detheux M et al..
Identification of a novel human ADP receptor coupled to Gi.
J Biol Chem.
2001;
276
41479-41485
- 72
Chambers J K, Macdonald L E, Sarau H M et al..
A G-protein-coupled receptor for UDP-glucose.
J Biol Chem.
2000;
275
10767-10771
- 73
Communi D, Suarez-Huerta N, Dussossoy D, Savi P, Boeynaems J M.
Cotranscription and intergenic splicing of human P2Y11 and SSF1 genes.
J Biol Chem.
2001;
276
16561-16566
- 74
Erb L, Garrad R, Wang Y et al..
Site-directed mutagenesis of P2U purinoceptors. Positively charged amino acids in
transmembrane helices 6 and 7 affect agonist potency and specificity.
J Biol Chem.
1995;
270
4185-4188
- 75
Jiang Q, Guo D, Lee B X et al..
A mutational analysis of residues essential for ligand recognition at the human P2Y1 receptor.
Mol Pharmacol.
1997;
52
499-507
- 76
Vassilatis D K, Hohmann J G, Zeng H et al..
The G protein-coupled receptor repertoires of human and mouse.
Proc Natl Acad Sci USA.
2003;
100
4903-4908
- 77
Wittenberg T, Schaller H C, Hellebrand S.
An expressed sequence tag (EST) data mining strategy succeeding in the discovery of
new G-protein coupled receptors.
J Mol Biol.
2001;
307
799-813
- 78
He W, Miao F J, Lin D C et al..
Citric acid cycle intermediates as liquands for orphan G-protein-coupled receptors.
Nature.
2004;
429
188-193
- 79
Abbracchio M P, Burnstock G, Boeynaems J M et al..
The recently deorphanized GPR 80 (GPR 99) propsed to be the P2Y13 receptor is not a genuine P2Y receptor.
Trends Pharmacol Sci.
2005;
26
8-9
- 80
Waldo G L, Harden T K.
Agonist binding and Gq-stimulating activities of the purified human P2Y1 receptor.
Mol Pharmacol.
2004;
65
426-436
- 81
Bodor E T, Waldo G L, Hooks S B et al..
Purification and functional reconstitution of the human P2Y12 receptor.
Mol Pharmacol.
2003;
64
1210-1216
- 82
Baltensperger K, Porzig H.
The P2U purinoceptor obligatorily engages the heterotrimeric G protein G16 to mobilize intracellular Ca2+ in human erythroleukemia cells.
J Biol Chem.
1997;
272
10151-10159
- 83
Murthy K S, Makhoulf G M.
Coepxression of ligand-gated P2X and G protein-coupled P2Y receptors in smooth muscle.
Preferential activation of P2Y receptors coupled to phospholipase C (PLC)-betal via
Galphaq/11 and to PLC-beta3 via Gbetagammai3.
J Biol Chem.
1998;
273
4695-4704
- 84
Soulet C, Sauzeau V, Plantavid M et al..
Gi-dependent and -independent mechanisms downstream of the P2Y12 ADP-receptor.
J Thromb Haemost.
2004;
2
135-146
- 85
Moers A, Nieswandt B, Massberg S et al..
G13 is an essential mediator of platelet activation in hemostasis and thrombosis.
Nat Med.
2003;
9
1418-1422
- 86
White P J, Webb T E, Boarder M R.
Characterization of a Ca2+ response to both UTP and ATP at human P2Y11 receptors: evidence for agonist-specific signaling.
Mol Pharmacol.
2003;
63
1356-1363
- 87
Marteau F, Le Poul E, Communi D et al..
Pharmacological characterization of the human P2Y13 receptor.
Mol Pharmacol.
2003;
64
104-112
- 88
Mosbacher J, Maier R, Fakler B et al..
P2Y receptor subtypes differentially couple to inwardly-rectifying potassium channels.
FEBS Lett.
1998;
436
104-110
- 89
Filippov A K, Webb T E, Barnard E A, Brown D A.
Inhibition by heterologously-expressed P2Y2 nucleotide receptors of N-type calcium currents in rat sympathetic neurones.
Br J Pharmacol.
1997;
121
849-851
- 90
Filippov A K, Simon J, Barnard E A, Brown D A.
Coupling of the nucleotide P2Y4 receptor to neuronal ion channels.
Br J Pharmacol.
2003;
138
400-406
- 91
Filippov A K, Webb T E, Barnard E A, Brown D A.
Dual coupling of heterologously-expressed rat P2Y6 nucleotide receptors to N-type Ca2+ and M-type K+ currents in rat sympathetic neurones.
Br J Pharmacol.
1999;
126
1009-1017
- 92
Simon J, Filippov A K, Goransson S et al..
Characterization and channel coupling of the P2Y12 nucleotide receptor of brain capillary endothelial cells.
J Biol Chem.
2002;
277
31390-31400
- 93
Sellers L A, Simon J, Lundahl T S et al..
Adenosine nucleotides acting at the human P2Y1 receptor stimulate mitogen-activated protein kinases and induce apoptosis.
J Biol Chem.
2001;
276
16379-16390
- 94
Santiago-Perez L I, Flores R V, Santos-Berrios C et al..
P2Y2 nucleotide receptor signaling in human monocytic cells: activation, desensitization
and coupling to mitogen-activated protein kinases.
J Cell Physiol.
2001;
187
196-208
- 95
Soltoff S P, Avraham H, Avraham S, Cantley L C.
Activation of P2Y2 receptors by UTP and ATP stimulates mitogen-activated kinase activity through a pathway
that involves related adhesion focal tyrosine kinase and protein kinase C.
J Biol Chem.
1998;
273
2653-2660
- 96
Hall R A, Ostedgaard L S, Premont R T et al..
A C-terminal motif found in the β2-adrenergic receptor, P2Y1 receptor and cystic fibrosis transmembrane conductance regulator determines binding
to the Na+/H+ exchanger regulatory factor family of PDZ proteins.
Proc Natl Acad Sci USA.
1998;
95
8496-8501
- 97
Liu J, Liao Z, Camden J et al..
SH3 binding sites in the P2Y2 nucleotide receptor interact with Src regulate activities of Src, Pyk2, and growth
factor receptors.
J Biol Chem.
2003;
279
9818-9838
- 98
Lee S Y, Wolff S C, Nicholas R A, O'Grady S M.
P2Y receptors modulate ion channel function through interactions involving the C-terminal
domain.
Mol Pharmacol.
2003;
63
878-885
- 99
Leon C, Hechler B, Freund M et al..
Defective platelet aggregation and increased resistance to thrombosis in purinergic
P2Y1 receptor-null mice.
J Clin Invest.
1999;
104
1731-1737
- 100
Fabre J E, Nguyen M, Latour A et al..
Decreased platelet aggregation, increased bleeding time and resistance to thromboembolism
in P2Y1-deficient mice.
Nat Med.
1999;
5
1199-1202
- 101
Foster C J, Prosser D M, Agans J M et al..
Molecular identification and characterization of the platelet ADP receptor targeted
by thienopyridine antithrombotic drugs.
J Clin Invest.
2001;
107
1591-1598
- 102
Andre P, Delaney S M, LaRocca T et al..
P2Y12 regulates platelet adhesion/activation, thrombus growth, and thrombus stability in
injured arteries.
J Clin Invest.
2003;
112
398-406
- 103
Homolya L, Watt W C, Lazarowski E R, Koller B H, Boucher R C.
Nucleotide-regulated calcium signaling in lung fibroblasts and epithelial cells from
normal and P2Y2 receptor-/- mice.
J Biol Chem.
1999;
274
26454-26460
- 104
Cressman V L, Lazarowski E, Homolya L et al..
Effect of loss of P2Y2 receptor gene expression on nucleotide regulation of murine epithelial Cl- transport.
J Biol Chem.
1999;
274
26461-26468
- 105
Robaye B, Ghanem E, Wilkin F et al..
Loss of nucleotide regulation of epithelial chloride transport in the jejunum of P2Y4-null mice.
Mol Pharmacol.
2003;
63
777-783
- 106
Bennett W D, Olivier K N, Zeman K L et al..
Effect of uridine 5′-triphosphate plus amiloride on mucociliary clearance in adult
cystic fibrosis.
Am J Respir Crit Care Med.
1996;
153
1796-1801
- 107
Olivier K N, Bennett W D, Hohneker K W et al..
Acute safety and effects on mucociliary clearance of aerosolized uridine 5′-triphosphate
+/- amiloride in normal human adults.
Am J Respir Crit Care Med.
1996;
154
217-223
- 108
Yerxa B R, Sabater J R, Davis C W et al..
Pharmacology of INS37217 [P(1)-(uridine 5′)-P(4)-(2′-deoxycytidine 5′) tetraphosphate,
tetrasodium salt], a next-generation P2Y(2) receptor agonist for the treatment of
cystic fibrosis.
J Pharmacol Exp Ther.
2002;
302
871-880
- 109
Nichols K K, Yerxa B, Kellerman D J.
Diquafosol tetrasodium: a novel dry eye therapy.
Expert Opin Investig Drugs.
2004;
13
47-54
- 110
Maminishkis A, Jalickee S, Blaug S A et al..
The P2Y2 receptor agonist INS37217 stimulates RPE fluid transport in vitro and retinal reattachment
in rat.
Invest Ophthalmol Vis Sci.
2002;
43
3555-3566
- 111
Jiang L, Foster F M, Ward P et al..
Extracellular ATP triggers cyclic AMP-dependent differentiation of HL-60 cells.
Biochem Biophys Res Commun.
1997;
232
626-630
- 112
Communi D, Janssens R, Robaye B, Zeelis N, Boeynaems J M.
Rapid up-regulation of P2Y messengers during granulocytic differentiation of Hl-60
cells.
FEBS Lett.
2000;
475
39-42
- 113
Wilkin F, Duhant X, Bruyns C et al..
The P2Y11 receptor mediates the ATP-induced maturation of human monocyte-derived dentritic
cells.
J Immunol.
2001;
166
7172-7177
- 114
Ia Sala A, Ferrari D, Corinti S et al..
Extracellular ATP induces a distorted maturation of dentritic cells and inhibits their
capacity to initiate Th1 responses.
J Immunol.
2001;
166
1611-1617
- 115
Wilkin F, Stordeur P, Goldman M, Boeynaems J M, Robaye B.
Extracellular adenine nucleotides modulate cytokine production by human monocyte-derived
dentritic cells: dual effect on IL-12 and stimulation of IL-10.
Eur J Immunol.
2002;
32
2409-2417
- 116
Duhant X, Schandene L, Bruyns C et al..
Extracellular adenine nucleotides inhibit the activation of human CD4+ T lymphocytes.
J Immunol.
2002;
169
15-21
- 117
Nataraj C, Thomas D W, Tilley S L et al..
Receptors for prostaglandin E2 that regulate cellular immune responses in the mouse.
J Clin Invest.
2001;
108
1229-1235
Dr.
Jean-Marie Boeynaems
Chimie Médicale, Hôpital Erasme
808, Route de Lennik, 1070 Brussels, Belgium
Email: jmboeyna@ulb.ac.be