Semin Thromb Hemost 2005; 31(2): 139-149
DOI: 10.1055/s-2005-869519
Copyright © 2005 by Thieme Medical Publishers, Inc., 333 Seventh Avenue, New York, NY 10001, USA. Tel: +1(212) 584-4662.

Overview of the P2 Receptors

Jean-Marie Boeynaems1 , 2 , 3 , Didier Communi2 , Nathalie Suarez Gonzalez2 , Bernard Robaye2
  • 1Professor, Institute of Interdisciplinary Research, School of Medicine and Institute of Molecular and Medical Biology, Brussels, Belgium
  • 2Institute of Interdisciplinary Research, School of Medicine
  • 3Department of Medical Chemistry, Erasme Hospital, Université Libre de Bruxelles, Brussels, Belgium
Further Information

Publication History

Publication Date:
26 April 2005 (online)

ABSTRACT

The release of nucleotides in extracellular fluids can result from cell necrosis, exocytosis of secretory granules (such as platelet dense granules), or efflux through membrane channels. In addition, recent evidence suggests that vesicular trafficking is an important pathway of nucleotide release. Once in the extracellular fluids, they are rapidly degraded by ectonucleotidases, such as CD39, that play a key role in neutralizing the platelet aggregatory action of adenosine diphosphate (ADP), and act on two families of receptors: the ionotropic P2X receptors and the G-protein-coupled P2Y receptors. The family of P2X receptors encompasses seven genes. Currently, there are eight genuine P2Y receptors that can be subdivided into two structurally distinct subfamilies. Whereas P2X receptors are receptors of ATP, the different P2Y receptors are activated by distinct nucleotides, diphosphates or triphosphates, or purines or pyrimidines, some of them being conjugated to sugars. The study of knockout mice has demonstrated that P2X receptors play important roles in the neurogenic control of smooth muscle contraction, in pain and visceral perception, and in macrophage functions. The phenotype of P2Y null mice so far is more restricted: inhibition of platelet aggregation to ADP and increased bleeding time in P2Y1 -/- and P2Y12 -/- mice and lack of epithelial responsiveness to nucleotides in airways (P2Y2 -/-) and intestine (P2Y4 0/-).

REFERENCES

  • 1 Zhang M, Zhong H, Vollmer C, Nurse C A. Co-release of ATP and ACh-mediates hypoxic signalling at rat carotid body chemoreceptors.  J Physiol. 2000;  525 143-158
  • 2 Coco S, Calegari F, Pravettoni E et al.. Storage and release of ATP from astrocytes in culture.  J Biol Chem. 2003;  278 1354-1362
  • 3 Beigi R, Kobatake E, Aizawa M, Dubyak G R. Detection of local ATP release from activated platelets using cell surface-attached firefly luciferase.  Am J Physiol. 1999;  276 C267-C278
  • 4 Lazarowski E R, Harden T K. Quantitation of extracellular UTP using a sensitive enzymatic assay.  Br J Pharmacol. 1999;  127 1272-1278
  • 5 Grierson J P, Meldolesi J. Shear stress-induced [Ca2+]i transients and oscillations in mouse fibroblasts are mediated by endogenously release ATP.  J Biol Chem. 1995;  270 4451-4456
  • 6 Ferguson D R, Kennedy I, Burton T J. ATP is released from rabbit urinary bladder epithelial cells by hydrostatic pressure changes-a possible sensory mechanism?.  J Physiol. 1997;  505 503-511
  • 7 Knight G E, Bodin P, De Groat W C, Burnstock G. ATP is released from guinea pig ureter epithelium on distension.  Am J Physiol Renal Physiol. 2002;  282 F281-F288
  • 8 Mitchell C H, Carre D A, McGlinn A M, Stone R A. A release mechanism for stored ATP in ocular ciliary epithelial cells.  Proc Natl Acad Sci USA. 1998;  95 7174-7178
  • 9 Lazarowski E R, Homolya L, Boucher R C, Harden T K. Direct demonstration of mechanically induced release of cellular UTP and its implication for uridine nucleotide receptor activation.  J Biol Chem. 1997;  272 24348-24354
  • 10 Burnstock G. Purine-mediated signalling in pain and visceral perception.  Trends Pharmacol Sci. 2001;  22 182-188
  • 11 Homolya L, Steinberg T H, Boucher R C. Cell to cell communication in response to mechanical stress via bilateral release of ATP and UTP in polarized epithelial.  J Cell Biol. 2000;  150 1349-1359
  • 12 Gerasimovskaya E V, Ahmad S, White C W et al.. Extracellular ATP is an autocrine/paracrine regulator of hypoxia-induced adventitial fibroblast growth.  J Biol Chem. 2002;  277 44638-44650
  • 13 Gonzalez-Alonso J, Olsen D B, Saltin B. Erythrocyte and the regulation of human skeletal muscle blood flow and oxygen delivery: role of circulating ATP.  Circ Res. 2002;  91 1046-1055
  • 14 Sprague R S, Stephenson A H, Ellsworth M L, Keller C, Lonigro A J. Impaired release of ATP from red blood cells of humans with primary pulmonary hypertension.  Exp Biol Med (Maywood). 2001;  226 434-439
  • 15 McNamara N, Khong A, McKemy D et al.. ATP transduces signals from ASGM1, a glycolipid that functions as a bacterial receptor.  Proc Natl Acad Sci USA. 2001;  98 9086-9091
  • 16 Crane J K, Olson R A, Jones H M, Duffey M E. Release of ATP during host cell killing by enteropathogenic E. coli and its role as a secretory mediator.  Am J Physiol Gastrointest Liver Physiol. 2002;  283 G74-G86
  • 17 Tran Van Nhieu G, Clair C, Bruzzone R et al.. Connexin-dependent inter-cellular communication increases invasion and dissemination of Shigella in epithelial cells.  Nat Cell Biol. 2003;  5 720-726
  • 18 Schneider S W, Egan M E, Jena B P et al.. Continuous detection of extracellular ATP on living cells by using atomic force microscopy.  Proc Natl Acad Sci USA. 1999;  96 12180-12185
  • 19 Watt W C, Lazarowski E R, Boucher R C. Cystic fibrosis transmembrane regulator-independent release of ATP.  J Biol Chem. 1998;  273 14053-14058
  • 20 Braunstein G M, Roman R M, Clancy J P et al.. Cystic fibrosis transmembrane conductance regulator facilitates ATP release by stimulating a separate ATP release channel for autocrine control of cell volume regulation.  J Biol Chem. 2001;  276 6621-6630
  • 21 Roman R M, Lomri N, Braunstein G et al.. Evidence for multidrug resistance-1 P-glycoprotein-dependent regulation of cellular ATP permeability.  J Membr Biol. 2001;  183 165-173
  • 22 Bodas E, Aleu J, Pujol G, Martin-Satué M, Marsal J. ATP crossing the cell plasma membrane generates an ionic current in Xenopus oocytes.  J Biol Chem. 2000;  275 20268-20273
  • 23 Kalinowski L, Dobrucki L W, Szczepanska-Konkel M et al.. Third-generation β-blockers stimulate nitric oxide release form endothelial cells through ATP efflux. A novel mechanism for antihypertensive action.  Circulation. 2003;  107 2747-2752
  • 24 Bell P D, Lapointe J Y, Sabirov R et al.. Macula densa cell signaling involves ATP release through a maxi anion channel.  Proc Natl Acad Sci USA. 2003;  100 4322-4327
  • 25 Sun D, Samuelson L C, Yang T et al.. Mediation of tubuloglomerular feedback by adenosine: evidence from mice lacking adenosine 1 receptors.  Proc Natl Acad Sci USA. 2001;  98 9983-9988
  • 26 Inscho E W, Cook A K, Imig J D, Vial C, Evans R J. Physiological role for P2X1 receptors in renal microvascular autoregulatory behavior.  J Clin Invest. 2003;  112 1895-1905
  • 27 Cotrina M L, Lin J HC, Alves-Rodrigues A et al.. Connexins regulate calcium signaling by controlling ATP release.  Proc Natl Acad Sci USA. 1998;  95 15735-15740
  • 28 Lazarowski E R, Shea D A, Boucher R C, Kendall Harden T. Release of cellular UDP-glucose as a potential extracellular signaling molecule.  Mol Pharmacol. 2003;  63 1190-1197
  • 29 Zhong X, Malhotra R, Guidotti G. ATP uptake in the golgi and extracellular release require Mcd4 protein and the vacuolar H+-ATPase.  J Biol Chem. 2003;  278 33436-33444
  • 30 Maroto R, Hamill O P. Brefeldin a block of integrin-dependent mechanosensitive ATP release from Xenopus oocytes reveals a novel mechanism of mechanotransduction.  J Biol Chem. 2001;  276 23867-23872
  • 31 Khakh B S, Burnstock G, Kennedy C et al.. International union of pharmacology. XXIV. Current status of the nomenclature and properties of P2X receptors and their subunits.  Pharmacol Rev. 2001;  53 107-118
  • 32 North R A. Molecular physiology of P2X receptors.  Physiol Rev. 2002;  82 1013-1067
  • 33 Valera S, Hussy N, Evans R J et al.. A new class of ligand-gated ion channel defined by P2X receptor for extracellular ATP.  Nature. 1994;  371 516-519
  • 34 Lynch K J, Touma E, Niforatos W et al.. Molecular and functional characterization of human P2X2 receptors.  Mol Pharmacol. 1999;  56 1171-1181
  • 35 Garcia-Guzman M, Stuhmer W, Soto F. Molecular characterization and pharmacological properties of the human P2X3 purinoceptor.  Brain Res Mol Brain Res. 1997;  47 59-66
  • 36 Garcia-Guzan M, Soto F, Gomez-Hernandez J M, Lund P E, Stuhmer M. Characterization of recombinant human P2X4 receptor reveals pharmacological differences to the rat receptor.  Mol Pharmacol. 1997;  51 109-118
  • 37 Le K T, Paquet M, Nouel D, Babinski K, Seguela P. Primary structure and expression of a naturally truncated human P2X ATP receptor subunit from brain and immune system.  FEBS Lett. 1997;  418 195-199
  • 38 Urano T, Nishimori H, Han H et al.. Cloning of P2XM, a novel human P2X receptor gene regulated by p53.  Cancer Res. 1997;  57 3281-3287
  • 39 Rassendren F, Buell G N, Virginio C et al.. The permeabilizing ATP receptor, P2X7. Cloning and expression of a human cDNA.  J Biol Chem. 1997;  272 5482-5486
  • 40 Nicke A, Baumert H G, Rettinger J et al.. P2X1 and P2X3 receptors form stable trimers: a novel structural motif of ligand-gated ion channels.  EMBO J. 1998;  17 3016-3028
  • 41 Torres G E, Egan T M, Voigt M M. Hetero-oligomeric assembly of P2X receptor subunits. Specificities exist with regard to possible partners.  J Biol Chem. 1999;  274 6653-6659
  • 42 Evans R J, Lewis C, Virginio C et al.. Ionic permeability of, and divalent cation effects on, two ATP-gated cation channels (P2X receptors) expressed in mammalian cells.  J Physiol. 1996;  497 413-422
  • 43 Ding S, Sachs F. Single channel properties of P2X2 purinoceptors.  J Gen Physiol. 1999;  113 695-720
  • 44 Lewis C, Neldhart S, Holy C et al.. Coexpression of P2X2 and P2X3 receptor subunits can account for ATP-gated currents in sensory neurons.  Nature. 1995;  377 432-435
  • 45 Virginio C, MacKenzie A, North R A, Surprenant A. Kinetics of cell lysis, dye uptake and permeability changes in cells expressing the rat P2X7 receptor.  J Physiol. 1999;  519 335-346
  • 46 Kim M, Jiang L H, Wilson H L, North R A, Surprenant A. Proteomic and functional evidence for a P2X7 receptor signalling complex.  EMBO J. 2001;  20 6347-6358
  • 47 Denlinger L C, Fisette P L, Sommer J A et al.. Cutting edge: the nucleotide receptor P2X7 contains multiple protein- and lipid- interaction motifs including a potential binding site for bacterial lipopolysaccharide.  J Immunol. 2001;  167 1871-1876
  • 48 Mulryan K, Gitterman D P, Lewis C J et al.. Reduced vas deferens contraction and male infertility in mice lacking P2X1 receptors.  Nature. 2000;  403 86-89
  • 49 Vial C, Evans R J. P2X1 receptor-deficient mice establish the native P2X receptor and a P2Y6-like receptor in arteries.  Mol Pharmacol. 2002;  62 1438-1445
  • 50 Calvert J A, Evans R J. Heterogeneity of P2X receptors in sympathetic neurons: contribution of neuronal P2X1 receptors revealed using knockout mice.  Mol Pharmacol. 2004;  65 139-148
  • 51 Rong W, Gourine A V, Cockayne D A et al.. Pivotal role of nucleotide P2X2 receptor subunit of the ATP-gated ion channel mediating ventilatory responses to hypoxia.  J Neurosci. 2003;  23 11315-11321
  • 52 Cockayne D A, Hamilton S G, Zhu Q M et al.. Urinary bladder hyporeflexia and reduced pain-related behaviour in P2X3- deficient mice.  Nature. 2000;  407 1011-1015
  • 53 Souslova V, Cesare P, Ding Y et al.. Warm-coding deficits and aberrant inflammatory pain in mice lacking P2X3 receptors.  Nature. 2000;  407 1015-1017
  • 54 Jarvis M F, Burgard E C, McGaraughty S et al.. A-317491, a novel potent and selective non-nucleotide antagonist of P2X3 and P2X2/3 receptors, reduces chronic inflammatory and neuropathic pain in the rat.  Proc Natl Acad Sci USA. 2002;  99 17179-17184
  • 55 Tsuda M, Shigemoto-Mogami Y, Koizumi S et al.. P2X4 receptors induced in spinal microglia gate tactile allodynia after nerve injury.  Nature. 2003;  424 778-783
  • 56 Fairbairn I P, Stober C B, Dinakantha S, Kumararatne S, Lammas D A. ATP-mediated killing of intracellular mycobacteria by macrophages is a P2X7-dependent process inducing bacterial death by phagosome-lysosome fusion.  J Immunol. 2001;  167 3300-3307
  • 57 Solle M, Labasi J, Perregaux D G et al.. Altered cytokine production in mice lacking P2X7 receptors.  J Biol Chem. 2001;  276 125-132
  • 58 Saunders B M, Fernando S L, Sluyter R, Britton W J, Wiley J S. A loss-of-function polymorphism in the human P2X7 receptor abolishes ATP-mediated killing of mycobacteria.  J Immunol. 2003;  171 5442-5446
  • 59 Wiley J S, Dai-Ung L P, Li C et al.. An Ile-568 to Asn polymorphism prevents normal trafficking and function of the human P2X7 receptor.  J Biol Chem. 2003;  278 17108-17113
  • 60 Li C M, Campbell S J, Kumararatne D S et al.. Association of a polymorphism in the P2X7 gene with tuberculosis in a gambian population.  J Infect Dis. 2002;  186 1458-1462
  • 61 Ke H Z, Qi H, Weidema A F et al.. Deletion of the P2X7 nucleotide receptor reveals its regulator roles in bone formation and resorption.  Mol Endocrinol. 2003;  17 1356-1367
  • 62 Abbrachio M P, Boeynaems J M, Barnard E A et al.. Characterization of the UDP-glucose receptor (re-named here the P2Y14 receptor) adds diversity to the P2Y receptor family.  Trends Pharmacol Sci. 2003;  24 52-55
  • 63 Herold C L, Qi A D, Harden T K, Nicholas R A. Agonist versus antagonist action of ATP at the P2Y4 receptor is determined by the second extracellular loop.  J Biol Chem. 2004;  279 11456-11464
  • 64 Leon C, Vial C, Cazenave J P, Gachet C. Cloning and sequencing of a human cDNA encoding endothelial P2Y1 receptor.  Gene. 1996;  171 295-297
  • 65 Parr C E, Sullivan D M, Paradiso A M et al.. Cloning and expression of a human P2U nucleotide receptor, a target for cystic fibrosis pharmacotherapy.  Proc Natl Acad Sci USA. 1994;  91 3275-3279
  • 66 Communi D, Pirotton S, Parmentier M, Boeynaems J M. Cloning and functional expression of a human uridine nucleotide receptor.  J Biol Chem. 1995;  270 30849-30852
  • 67 Communi D, Parmentier M, Boeynaems J M. Cloning, functional expression and tissue distribution of the human P2Y6 receptor.  Biochem Biophys Res Commun. 1996;  222 303-308
  • 68 Communi D, Govaerts C, Parmentier M, Boeynaems J M. Cloning of a human purinergic receptor coupled to phospholipase C and adenylyl cyclase.  J Biol Chem. 1997;  272 31969-31973
  • 69 Hollopeter G, Jantzen H M, Vincent D et al.. Identification of the platelet ADP receptor targeted by antithrombotic drugs.  Nature. 2001;  409 202-206
  • 70 Zhang F L, Luo L, Gustafson E et al.. ADP is the cognate ligand for the orphan G-protein coupled receptor SP1999.  J Biol Chem. 2001;  276 8608-8615
  • 71 Communi D, Gonzalez N S, Detheux M et al.. Identification of a novel human ADP receptor coupled to Gi.  J Biol Chem. 2001;  276 41479-41485
  • 72 Chambers J K, Macdonald L E, Sarau H M et al.. A G-protein-coupled receptor for UDP-glucose.  J Biol Chem. 2000;  275 10767-10771
  • 73 Communi D, Suarez-Huerta N, Dussossoy D, Savi P, Boeynaems J M. Cotranscription and intergenic splicing of human P2Y11 and SSF1 genes.  J Biol Chem. 2001;  276 16561-16566
  • 74 Erb L, Garrad R, Wang Y et al.. Site-directed mutagenesis of P2U purinoceptors. Positively charged amino acids in transmembrane helices 6 and 7 affect agonist potency and specificity.  J Biol Chem. 1995;  270 4185-4188
  • 75 Jiang Q, Guo D, Lee B X et al.. A mutational analysis of residues essential for ligand recognition at the human P2Y1 receptor.  Mol Pharmacol. 1997;  52 499-507
  • 76 Vassilatis D K, Hohmann J G, Zeng H et al.. The G protein-coupled receptor repertoires of human and mouse.  Proc Natl Acad Sci USA. 2003;  100 4903-4908
  • 77 Wittenberg T, Schaller H C, Hellebrand S. An expressed sequence tag (EST) data mining strategy succeeding in the discovery of new G-protein coupled receptors.  J Mol Biol. 2001;  307 799-813
  • 78 He W, Miao F J, Lin D C et al.. Citric acid cycle intermediates as liquands for orphan G-protein-coupled receptors.  Nature. 2004;  429 188-193
  • 79 Abbracchio M P, Burnstock G, Boeynaems J M et al.. The recently deorphanized GPR 80 (GPR 99) propsed to be the P2Y13 receptor is not a genuine P2Y receptor.  Trends Pharmacol Sci. 2005;  26 8-9
  • 80 Waldo G L, Harden T K. Agonist binding and Gq-stimulating activities of the purified human P2Y1 receptor.  Mol Pharmacol. 2004;  65 426-436
  • 81 Bodor E T, Waldo G L, Hooks S B et al.. Purification and functional reconstitution of the human P2Y12 receptor.  Mol Pharmacol. 2003;  64 1210-1216
  • 82 Baltensperger K, Porzig H. The P2U purinoceptor obligatorily engages the heterotrimeric G protein G16 to mobilize intracellular Ca2+ in human erythroleukemia cells.  J Biol Chem. 1997;  272 10151-10159
  • 83 Murthy K S, Makhoulf G M. Coepxression of ligand-gated P2X and G protein-coupled P2Y receptors in smooth muscle. Preferential activation of P2Y receptors coupled to phospholipase C (PLC)-betal via Galphaq/11 and to PLC-beta3 via Gbetagammai3.  J Biol Chem. 1998;  273 4695-4704
  • 84 Soulet C, Sauzeau V, Plantavid M et al.. Gi-dependent and -independent mechanisms downstream of the P2Y12 ADP-receptor.  J Thromb Haemost. 2004;  2 135-146
  • 85 Moers A, Nieswandt B, Massberg S et al.. G13 is an essential mediator of platelet activation in hemostasis and thrombosis.  Nat Med. 2003;  9 1418-1422
  • 86 White P J, Webb T E, Boarder M R. Characterization of a Ca2+ response to both UTP and ATP at human P2Y11 receptors: evidence for agonist-specific signaling.  Mol Pharmacol. 2003;  63 1356-1363
  • 87 Marteau F, Le Poul E, Communi D et al.. Pharmacological characterization of the human P2Y13 receptor.  Mol Pharmacol. 2003;  64 104-112
  • 88 Mosbacher J, Maier R, Fakler B et al.. P2Y receptor subtypes differentially couple to inwardly-rectifying potassium channels.  FEBS Lett. 1998;  436 104-110
  • 89 Filippov A K, Webb T E, Barnard E A, Brown D A. Inhibition by heterologously-expressed P2Y2 nucleotide receptors of N-type calcium currents in rat sympathetic neurones.  Br J Pharmacol. 1997;  121 849-851
  • 90 Filippov A K, Simon J, Barnard E A, Brown D A. Coupling of the nucleotide P2Y4 receptor to neuronal ion channels.  Br J Pharmacol. 2003;  138 400-406
  • 91 Filippov A K, Webb T E, Barnard E A, Brown D A. Dual coupling of heterologously-expressed rat P2Y6 nucleotide receptors to N-type Ca2+ and M-type K+ currents in rat sympathetic neurones.  Br J Pharmacol. 1999;  126 1009-1017
  • 92 Simon J, Filippov A K, Goransson S et al.. Characterization and channel coupling of the P2Y12 nucleotide receptor of brain capillary endothelial cells.  J Biol Chem. 2002;  277 31390-31400
  • 93 Sellers L A, Simon J, Lundahl T S et al.. Adenosine nucleotides acting at the human P2Y1 receptor stimulate mitogen-activated protein kinases and induce apoptosis.  J Biol Chem. 2001;  276 16379-16390
  • 94 Santiago-Perez L I, Flores R V, Santos-Berrios C et al.. P2Y2 nucleotide receptor signaling in human monocytic cells: activation, desensitization and coupling to mitogen-activated protein kinases.  J Cell Physiol. 2001;  187 196-208
  • 95 Soltoff S P, Avraham H, Avraham S, Cantley L C. Activation of P2Y2 receptors by UTP and ATP stimulates mitogen-activated kinase activity through a pathway that involves related adhesion focal tyrosine kinase and protein kinase C.  J Biol Chem. 1998;  273 2653-2660
  • 96 Hall R A, Ostedgaard L S, Premont R T et al.. A C-terminal motif found in the β2-adrenergic receptor, P2Y1 receptor and cystic fibrosis transmembrane conductance regulator determines binding to the Na+/H+ exchanger regulatory factor family of PDZ proteins.  Proc Natl Acad Sci USA. 1998;  95 8496-8501
  • 97 Liu J, Liao Z, Camden J et al.. SH3 binding sites in the P2Y2 nucleotide receptor interact with Src regulate activities of Src, Pyk2, and growth factor receptors.  J Biol Chem. 2003;  279 9818-9838
  • 98 Lee S Y, Wolff S C, Nicholas R A, O'Grady S M. P2Y receptors modulate ion channel function through interactions involving the C-terminal domain.  Mol Pharmacol. 2003;  63 878-885
  • 99 Leon C, Hechler B, Freund M et al.. Defective platelet aggregation and increased resistance to thrombosis in purinergic P2Y1 receptor-null mice.  J Clin Invest. 1999;  104 1731-1737
  • 100 Fabre J E, Nguyen M, Latour A et al.. Decreased platelet aggregation, increased bleeding time and resistance to thromboembolism in P2Y1-deficient mice.  Nat Med. 1999;  5 1199-1202
  • 101 Foster C J, Prosser D M, Agans J M et al.. Molecular identification and characterization of the platelet ADP receptor targeted by thienopyridine antithrombotic drugs.  J Clin Invest. 2001;  107 1591-1598
  • 102 Andre P, Delaney S M, LaRocca T et al.. P2Y12 regulates platelet adhesion/activation, thrombus growth, and thrombus stability in injured arteries.  J Clin Invest. 2003;  112 398-406
  • 103 Homolya L, Watt W C, Lazarowski E R, Koller B H, Boucher R C. Nucleotide-regulated calcium signaling in lung fibroblasts and epithelial cells from normal and P2Y2 receptor-/- mice.  J Biol Chem. 1999;  274 26454-26460
  • 104 Cressman V L, Lazarowski E, Homolya L et al.. Effect of loss of P2Y2 receptor gene expression on nucleotide regulation of murine epithelial Cl- transport.  J Biol Chem. 1999;  274 26461-26468
  • 105 Robaye B, Ghanem E, Wilkin F et al.. Loss of nucleotide regulation of epithelial chloride transport in the jejunum of P2Y4-null mice.  Mol Pharmacol. 2003;  63 777-783
  • 106 Bennett W D, Olivier K N, Zeman K L et al.. Effect of uridine 5′-triphosphate plus amiloride on mucociliary clearance in adult cystic fibrosis.  Am J Respir Crit Care Med. 1996;  153 1796-1801
  • 107 Olivier K N, Bennett W D, Hohneker K W et al.. Acute safety and effects on mucociliary clearance of aerosolized uridine 5′-triphosphate +/- amiloride in normal human adults.  Am J Respir Crit Care Med. 1996;  154 217-223
  • 108 Yerxa B R, Sabater J R, Davis C W et al.. Pharmacology of INS37217 [P(1)-(uridine 5′)-P(4)-(2′-deoxycytidine 5′) tetraphosphate, tetrasodium salt], a next-generation P2Y(2) receptor agonist for the treatment of cystic fibrosis.  J Pharmacol Exp Ther. 2002;  302 871-880
  • 109 Nichols K K, Yerxa B, Kellerman D J. Diquafosol tetrasodium: a novel dry eye therapy.  Expert Opin Investig Drugs. 2004;  13 47-54
  • 110 Maminishkis A, Jalickee S, Blaug S A et al.. The P2Y2 receptor agonist INS37217 stimulates RPE fluid transport in vitro and retinal reattachment in rat.  Invest Ophthalmol Vis Sci. 2002;  43 3555-3566
  • 111 Jiang L, Foster F M, Ward P et al.. Extracellular ATP triggers cyclic AMP-dependent differentiation of HL-60 cells.  Biochem Biophys Res Commun. 1997;  232 626-630
  • 112 Communi D, Janssens R, Robaye B, Zeelis N, Boeynaems J M. Rapid up-regulation of P2Y messengers during granulocytic differentiation of Hl-60 cells.  FEBS Lett. 2000;  475 39-42
  • 113 Wilkin F, Duhant X, Bruyns C et al.. The P2Y11 receptor mediates the ATP-induced maturation of human monocyte-derived dentritic cells.  J Immunol. 2001;  166 7172-7177
  • 114 Ia Sala A, Ferrari D, Corinti S et al.. Extracellular ATP induces a distorted maturation of dentritic cells and inhibits their capacity to initiate Th1 responses.  J Immunol. 2001;  166 1611-1617
  • 115 Wilkin F, Stordeur P, Goldman M, Boeynaems J M, Robaye B. Extracellular adenine nucleotides modulate cytokine production by human monocyte-derived dentritic cells: dual effect on IL-12 and stimulation of IL-10.  Eur J Immunol. 2002;  32 2409-2417
  • 116 Duhant X, Schandene L, Bruyns C et al.. Extracellular adenine nucleotides inhibit the activation of human CD4+ T lymphocytes.  J Immunol. 2002;  169 15-21
  • 117 Nataraj C, Thomas D W, Tilley S L et al.. Receptors for prostaglandin E2 that regulate cellular immune responses in the mouse.  J Clin Invest. 2001;  108 1229-1235

 Dr.
Jean-Marie Boeynaems

Chimie Médicale, Hôpital Erasme

808, Route de Lennik, 1070 Brussels, Belgium

Email: jmboeyna@ulb.ac.be

    >