Semin Hear 2005; 26(2): 59-69
DOI: 10.1055/s-2005-871003
Copyright © 2005 by Thieme Medical Publishers, Inc., 333 Seventh Avenue, New York, NY 10001, USA.

Adaptive Directional Benefit in the Near Field: Competing Sound Angle and Level Effects

Todd A. Ricketts1 , Benjamin W. Y. Hornsby1 , Earl E. Johnson1
  • 1Dan Maddox Hearing Aid Research Laboratory, Department of Hearing and Speech Sciences, Vanderbilt Bill Wilkerson Center, Nashville, Tennessee
Further Information

Publication History

Publication Date:
24 May 2005 (online)

ABSTRACT

Two experiments were performed that examined adaptive directional benefit and directional benefit as a function of competing noise level. Fourteen bilaterally fitted adult listeners with sloping, sensorineural hearing loss participated in both experiments. The results of the first experiment provide additional support for an adaptive advantage in environments with a discrete competing noise source placed near the listener. This advantage occurs even if the noise source is moving and only is present when the angle of the noise source relative to the listener does not correspond to an angle for which the fixed directional mode is optimized. Speech transmission index (STI) calculations do not generally support adaptive directional benefit in the presence of multiple competing noise sources. Specifically, an adaptive advantage was measured using the STI only when the intensity level of one of the competing noise sources in a group was at least 12 to 15 dB greater than all other sources combined. The results of the second experiment revealed more directional benefit for poorer signal-to-noise ratios (SNRs). However, if the SNR was held constant, the absolute noise level did not affect the magnitude of directional benefit.

REFERENCES

  • 1 Hawkins D B, Yacullo W S. Signal-to-noise ratio advantage of binaural hearing aids and directional microphones under different levels of reverberation.  J Speech Hear Disord. 1984;  49 278-286
  • 2 Killion M C, Schulien R, Christensen L, Fabry D, Revit L, Niquette P, Chung K. Real world performance of an ITE directional microphone.  Hear J. 1998;  51 24-26 30 32-36 38
  • 3 Kuk F K, Kollofski C, Brown S, Melum A, Rosenthal A. Use of a digital hearing aid with directional microphones in school-aged children.  J Am Acad Audiol. 1999;  10 535-548
  • 4 Ricketts T A. Impact of noise source configuration on directional hearing aid benefit and performance.  Ear Hear. 2000;  21 194-205
  • 5 Ricketts T A, Dahr S. Comparison of performance across.  J Am Acad Audiol. 1999;  10 180-189
  • 6 Ricketts T A, Hornsby B W. Distance and reverberation effects on directional benefit.  Ear Hear. 2003;  24 472-484
  • 7 Ricketts T A, Lindley G, Henry P. Impact of compression and hearing aid style on directional hearing aid benefit and performance.  Ear Hear. 2001;  22 348-361
  • 8 Valente M, Fabry D A, Potts L G. Recognition of speech in noise with hearing aids using dual microphones.  J Am Acad Audiol. 1995;  6 440-449
  • 9 Wouters J, Litere L, van Wieringen A. Speech intelligibility in noisy environments with one and two microphone hearing aids.  Audiology. 1999;  38 91-98
  • 10 Cord M T, Surr R K, Walden B E. Performance of directional microphone hearing aids in everyday life.  J Am Acad Audiol. 2002;  13 295-307
  • 11 Surr R K, Walden B E, Cord M T, Olson L. The influence of environmental factors on hearing aid microphone preference.  J Am Acad Audiol. 2002;  13 308-322
  • 12 Walden B E, Surr R K, Cord M T, Dyrlund O. Predicting hearing aid microphone preference in everyday listening.  J Am Acad Audiol. 2004;  15 365-396
  • 13 Ricketts T A, Dittberner A B. Directional amplification for improved signal-to-noise ratio: strategies measurement, and limitations. In: Valente M Strategies For Selecting and Verifying Hearing Aid Fittings. 2nd ed New York, NY; Thieme 2002: 274-346
  • 14 Borwick J. Microphones: Technology and Technique. Boston, MA; Focal Press 1990
  • 15 Preves D A. Directional microphone use in ITE hearing instruments.  Hear Rev. 1997;  4 21-22 24-27
  • 16 Ricketts T A, Mueller G. Making sense of directional microphone performance.  Am J Audiol. 1999;  8 117-127
  • 17 Thompson S C. Dual microphones or directional-plus-omni: which is best?. In: Kochkin S, Strom KE High Performance Hearing Solutions. Suppl Hear Rev 1999 3: 31-35
  • 18 Elko G W, Pong A N. A simple first-order directional microphone. Proceedings of the IEEE Workshop Applied Signal Process.  Audio Acoustics. 1995;  169-172
  • 19 Bentler R A, Tubbs J L, Egge J L, Flamme G A, Dittberner A B. Evaluation of an adaptive directional system in a DSP hearing aid.  Am J Audiol. 2004;  13 73-79
  • 20 Studebaker G A, Sherbecoe R L, McDaniel D M, Gwaltney C A. Monosyllabic word recognition at higher-than-normal speech and noise levels.  J Acoust Soc Am. 1999;  105 2431-2444
  • 21 Hornsby B W, Ricketts T A. The effects of compression ratio, signal-to-noise ratio, and level on speech recognition in normal-hearing listeners.  J Acoust Soc Am. 2001;  109 2964-2973
  • 22 Pearsons K S, Bennett R L, Fidell S. Speech Levels in Various Environments (EPA-600/1-77-025). Washington, DC; Environmental Protection Agency 1977
  • 23 Dillon H. NAL-NL1: a new prescriptive fitting procedure for non-linear hearing aids.  Hear J. 1999;  52 10-17
  • 24 Nilsson M J, Gellnet D, Sullivan J, Soli S D. Norms for the hearing in noise test: the influence of spatial separation, hearing loss and English language experience on speech reception thresholds.  J Acoust Soc Am. 1992;  92 S2385
  • 25 Nilsson M, Soli S D, Sullivan J A. Development of the Hearing in Noise Test for the measurement of speech reception thresholds in quiet and in noise.  J Acoust Soc Am. 1994;  95 1085-1099
  • 26 Cox R M, Alexander G C, Gilmore C A. Development of the Connected Speech Test (CST).  Ear Hear. 1987;  8 119S-126S
  • 27 Cox R M, Alexander G C, Gilmore C, Pusakulich K M. Use of the Connected Speech Test (CST) with hearing-impaired listeners.  Ear Hear. 1988;  9 198-207
  • 28 Greenberg J E, Zurek P M. Evaluation of an adaptive beamforming method for hearing aids.  J Acoust Soc Am. 1992;  91 1662-1676
  • 29 Kates J M, Weiss M R. A comparison of hearing-aid array processing techniques.  J Acoust Soc Am. 1996;  99 3138-3148
  • 30 Peterson P M, Durlach N I, Rabinowitz W M, Zurek P M. Multimicrophone adaptive beamforming for interference reduction in hearing aids.  J Rehabil Res Dev. 1987;  24 103-110
  • 31 Woods W S, Trine T D. Limitations of theoretical benefit from adaptive directional system in reverberant environments. Poster presented at International Hearing Aid Research conference August 2002 Lake Tahoe, CA;
  • 32 Houtgast T, Steeneken H JM. Evaluation of speech transmission channels by using artificial signals.  Acustica. 1971;  25 355-367
  • 33 Steeneken H JM, Houtgast T. A physical method for measuring speech-transmission quality.  J Acoust Soc Am. 1980;  67 318-326
  • 34 Hohmann V, Kollmeier B. The effect of multichannel dynamic compression on speech intelligibility.  J Acoust Soc Am. 1995;  97 1191-1195
  • 35 Humes L E, Dirks D D, Bell T S, Ahlstrom C, Kincaid G E. Application of the Articulation Index and the Speech Transmission Index to the recognition of speech by normal-hearing and hearing-impaired listeners.  J Speech Hear Res. 1986;  29 447-462

Todd A RickettsPh.D. 

Dan Maddox Hearing Aid Research Laboratory, Vanderbilt Bill Wilkerson Center

1114 19th Avenue South, Nashville, TN 37212

Email: Todd.a.ricketts@vanderbilt.edu

    >