Subscribe to RSS
DOI: 10.1055/s-2005-872659
Zinc Triflate as Lewis Acid in Nucleophilic Addition to Cyclic N-Acyliminium Ions
Publication History
Publication Date:
09 August 2005 (online)

Abstract
Zinc triflate-mediated nucleophilic addition of allytrimethylsilane, silyl enol ethers and terminal acetylenes to cyclic N-acyliminium ions at room temperature in CH2Cl2 is described. The corresponding α-substituted heterocycles were obtained in moderate to good yields. The versatility of this reagent was demonstrated in the one-pot generation of the N-acyliminium ion and the zinc alkynylide species, followed by their coupling reaction to afford propargylic adducts in moderate yields.
Key words
zinc triflate - nucleophilic addition - N-acyliminium ions
- For recent reviews on the chemistry of N-acyliminiun ions, see:
- 1a 
             
            Speckamp WN.Moolenaar MJ. Tetrahedron 2000, 56: 3817 ; and references cited therein
- 1b 
             
            Pilli RA.Rosso GB. Methods of Molecular Transformations, In Science of Synthesis (Houben-Weyl) Vol. 27:Padwa A. Thieme; Stuttgart: 2004. p.375
- 2a 
             
            Russowsky D.Petersen RZ.Godoi MN.Pilli RA. Tetrahedron Lett. 2000, 41: 9939
- 2b 
             
            Camilo NS.Pilli RA. Tetrahedron Lett. 2004, 45: 2821
- 3 
             
            Andrade CKZ.Matos RAF. Synlett 2003, 1189
- 4 
             
            Kobayashi S.Sugiura M.Kitagawa H. Chem. Rev. 2002, 102: 2227
- 5 
             
            Chini M.Crotti P.Gardelli C.Minutolo F.Pineschi M. Gazz. Chim. Ital. 1993, 123: 673
- 6 
             
            Ho M.Chung JKK.Tang N. Tetrahedron Lett. 1993, 34: 6513
- 7 
             
            Fortin R.Brochu C. Tetrahedron Lett. 1994, 35: 9681
- 8 
             
            Zhu X.Ganesan A. J. Org. Chem. 2002, 67: 2705
- 9 
             
            Bandini M.Cozzi PG.de Angelis M.Umani-Ronchi A. Tetrahedron Lett. 2000, 41: 1601
- 10 
             
            Murakata M.Tsutsui H.Hoshino O. Org. Lett. 2001, 3: 299
- 11 
             
            Ishimaru K.Kojima T. J. Org. Chem. 2003, 68: 4959
- 12a 
             
            Frantz DE.Fässler R.Carreira EM. J. Am. Chem. Soc. 1999, 121: 11245
- 12b 
             
            Frantz DE.Fässler R.Carreira EM. J. Am. Chem. Soc. 2000, 122: 1806
- 12c 
             
            Boyall D.Lopez F.Sasaki H.Carreira EM. Org. Lett. 2000, 2: 4233
- 12d 
             
            Sasaki H.Boyall D.Carreira EM. Helv. Chim. Acta 2001, 84: 964
- 12e 
             
            El-Sayed E.Anand NK.Carreira EM. Org. Lett. 2001, 3: 3017
- 12f 
             
            Anand NK.Carreira EM. J. Am.Chem. Soc. 2001, 123: 9687
- 12g 
             
            Boyall D.Frantz DE.Carreira EM. Org. Lett. 2002, 4: 2605
- 12h 
             
            Diez RS.Adger B.Carreira EM. Tetrahedron 2002, 58: 8341
- 12i 
             
            Fässler R.Frantz DE.Ötiker J.Carreira EM. Angew. Chem. Int. Ed. 2002, 41: 3054
- 12j 
             
            Reber S.Knöpfel TF.Carreira EM. Tetrahedron 2003, 59: 6813
- 14a 
             
            Pilli RA.Böckelmann MA.Alves CF. J. Braz. Chem. Soc. 2001, 12: 634
- 14b 
             
            D’Oca MGM.Moraes LAB.Pilli RA.Eberlin MN. J. Org. Chem. 2001, 66: 3854
- 16 
             
            Carreira EM.Fischer C. Org. Lett. 2004, 6: 1497
References
The allylation reactions and the addition of silyl enol ethers to N-acyl iminium ion precursors using Zn(OTf)2 gave comparable yields to those obtained when BF3·OEt2 was employed.
15For clarity, only the structures of the major diastereoisomers erythro-20 and erythro-21 are depicted in Table 
         [3]
         . Data for erythro-20, see ref. 2b.
Data for erythro-21: 1H NMR (CDCl3, 298 K): δ = 1.13 (d, J = 6.95 Hz, 3 H), 1.30-1.70 (s, 6 H); 1.50 (s, 9 H), 2.65-2.79 (s, 1 H), 4.02-4.23
         (m, 2 H), 4.69-4.82 (s, 1 H), 7.50-7.60 (m, 3 H), 7.99 (d, J = 6.95 Hz, 2 H). 13C NMR (CDCl3, 298 K): δ = 15.4, 19.6, 25.4, 27.6, 28.5, 38.8, 39.3, 53.0, 79.8, 128.4, 129.0,
         133.5, 137.1, 155.6, 203.5. IR (KBr, film): 2974, 2933, 1685, 1415, 1365, 1170, 1147,
         968 cm-1. Anal. Calcd for C19H27NO3: C, 71.92; H, 8.51; N, 4.41. Found: C, 71.59; H, 8.24; N, 4.37.
         Representative Procedure.
         
To a suspension of Zn(OTf)2 (0.24 mmol) in dry CH2Cl2 (1 mL) at r.t. was added a substrate 3b (0.20 mmol), diluted in dry CH2Cl2 (1 mL). After 10 min, allyltrimetylsilane (4, 0.40 mmol) was added. The mixture was stirred 3 h at r.t. and quenched with sat.
         NaHCO3 (2 mL), extracted with CH2Cl2 (2 × 5 mL), dried with anhyd Na2SO4. After filtration, the solvent was evaporated under reduced pressure and the residue
         was chromatographed on silica gel (5% MeOH in CHCl3) to afford 5 in 78% yield.
Data for compound 5: 1H NMR (300 MHz, CDCl3): δ = 1.74 (m, 1 H), 2.14 (m, 2 H), 2.34 (m, 3 H), 3.68 (m, 2 H), 4.60 (d, J = 15.8 Hz, 1 H), 5.10 (s, 1 H), 5.12 (d, J = 15.8 Hz, 1 H), 5.58 (s, 1 H), 5.65 (m, 1 H), 5.75 (s, 1 H). 13C NMR (300 MHz, CDCl3): δ = 23.4, 29.8, 37.2, 48.2, 56.2, 118.9, 119.1, 128.2, 132.5, 175.2. IR (KBr, film):
         3076, 2976, 2920, 1695, 1639, 1426, 1254, 1113, 915 cm-1. HMRS (EI): m/z calcd for C10H14NOBr: 245.0239; found: 245.0242.
 
    