Abstract
An account is given of the author’s several approaches to the synthesis of the parent
chromophore of phytochrome (1 ), a protein-bound linear tetrapyrrole derivative that controls photomorphogenesis
in higher plants. These studies culminated in enantioselective syntheses of both (2R )- and (2S )-phytochromobilin (4 ), as well as several 13 C-labeled derivatives designed to probe the site of Z ,E -isomerization during photoexcitation. When reacted in vitro, synthetic 2R -4 and recombinant-derived phytochrome apoprotein N -C produced a protein-bound chromophore with identical difference spectra to naturally
occurring 1 .
1 Introduction and Background
2 Early Interests
3 The Azomethine Imine Strategy to Rings A and B: A Saxitoxin Connection
4 The Sigmatropic Rearrangement Strategy: First Success
5 Regrouping with Pd Chemistry
6 Constructing the C,D-Ring Pyrromethenone of Phytochrome
7 Instability Issues: The ‘BC + D + A’ Strategy
8 Enantioselective Syntheses of (R )- and (S )-Phytochromobilin
9 Probing the Site of Pr Photoisomerization
Key words
phytochrome - pyrroles - lactams - alkynes - palladium
References
For reviews on the chemistry and biology of phytochrome, see:
<A NAME="RA39105ST-1A">1a </A>
Statter RL.
Galston AW. In
Chemistry and Biochemistry of Plant Pigments
Vol. 1:
Goodwin TW.
Academic Press;
New York:
1976.
p.680
<A NAME="RA39105ST-1B">1b </A>
Kendrick RE.
Spruit CJP.
Photochem. Photobiol.
1977,
26:
201
<A NAME="RA39105ST-1C">1c </A>
Pratt LH.
Photochem. Photobiol.
1978,
27:
81
<A NAME="RA39105ST-1D">1d </A>
Phytochrome and Photoregulation in Plants
Furuya M.
Academic Press;
New York:
1987.
<A NAME="RA39105ST-1E">1e </A>
Moses PB.
Chua N.-H.
Sci. Am.
1988,
258:
88
<A NAME="RA39105ST-1F">1f </A>
Rüdiger W.
Thümmler F.
Angew. Chem., Int. Ed. Engl.
1991,
30:
1216
<A NAME="RA39105ST-1G">1g </A>
Rüdiger W.
Photochem. Photobiol.
1992,
56:
803
<A NAME="RA39105ST-1H">1h </A>
Terry MJ.
Wahleithner JA.
Lagarias JC.
Arch. Biochem. Biophys.
1993,
306:
1
<A NAME="RA39105ST-1I">1i </A>
Song P.-S.
The Spectrum (Bowling Green State University)
1994,
7:
1
<A NAME="RA39105ST-1J">1j </A>
Montgomery BL.
Lagarias JC.
Trends Plant Sci.
2002,
7:
357 ; and cited references
For leading references to phycocyanin, phycoerythrin and other biliproteins see:
<A NAME="RA39105ST-2A">2a </A>
Scheer H.
Angew. Chem., Int. Ed. Engl.
1981,
20:
241 ; Angew. Chem. 1981 , 93 , 230
<A NAME="RA39105ST-2B">2b </A>
Glazer AN. In
The Biochemistry of Plants
Vol. 8:
Hatch MD.
Boardman NK.
Academic Press;
New York:
1981.
p.51
<A NAME="RA39105ST-2C">2c </A>
Bonnett R.
Tetrahedron
1983,
39:
1839
<A NAME="RA39105ST-2D">2d </A>
Falk H.
The Chemistry of Linear Oligopyrroles and Bile Pigments
Springer-Verlag;
Vienna, New York:
1989.
<A NAME="RA39105ST-3A">3a </A>
Lagarias JC.
Glazer AN.
Rapoport H.
J. Am. Chem. Soc.
1979,
101:
5030
<A NAME="RA39105ST-3B">3b </A>
Lagarias JC.
Rapoport H.
J. Am. Chem. Soc.
1980,
102:
4821
<A NAME="RA39105ST-3C">3c </A>
Schoenleber RW.
Leung S.-L.
Lundell DJ.
Glazer AN.
Rapoport H.
J. Am. Chem. Soc.
1983,
105:
4072
<A NAME="RA39105ST-3D">3d </A>
Schoenleber RW.
Kim Y.
Rapoport H.
J. Am. Chem. Soc.
1984,
106:
2645
<A NAME="RA39105ST-4A">4a </A>
Butler WL.
Norris KH.
Siegelman HW.
Hendricks SB.
Proc. Natl. Acad. Sci. U.S.A.
1959,
45:
1703
See also:
<A NAME="RA39105ST-4B">4b </A>
Rüdiger W.
Struct. Bond.
1980,
40:
101
<A NAME="RA39105ST-4C">4c </A>
Thümmler F.
Rüdiger W.
Tetrahedron
1983,
39:
1943
<A NAME="RA39105ST-4D">4d </A>
Rüdiger W.
Thümmler F.
Cmiel E.
Schneider S.
Proc. Natl. Acad. Sci. U.S.A.
1983,
80:
6244
<A NAME="RA39105ST-4E">4e </A>
Fodor SPA.
Lagarias JC.
Mathies RA.
Photochem. Photobiol.
1988,
48:
129
<A NAME="RA39105ST-4F">4f </A>
Farrens DL.
Holt RE.
Rospendowski BN.
Song P.-S.
Cotton TM.
J. Am. Chem. Soc.
1989,
111:
9162
<A NAME="RA39105ST-4G">4g </A>
Fodor SPA.
Lagarias JC.
Mathies RA.
Biochemistry
1990,
29:
11141
<A NAME="RA39105ST-5A">5a </A>
Grombein S.
Rüdiger W.
Zimmermann H.
Hoppe-Seyler’s Z. Physiol. Chem.
1975,
356:
1709
<A NAME="RA39105ST-5B">5b </A>
Andel F.
Murphy JT.
Haas JA.
McDowell MT.
van der Hoef I.
Lugtenburg J.
Lagarias JC.
Mathies RA.
Biochemistry
2000,
39:
2667 ; and cited references
<A NAME="RA39105ST-5C">5c </A>
Andel F.
Lagarias JC.
Mathies RA.
Biochemistry
1996,
35:
15997 ; and cited references
Representative recent papers:
<A NAME="RA39105ST-5D">5d </A>
Strauss HM.
Hughes J.
Schmieder P.
Biochemistry
2005,
44:
8244
<A NAME="RA39105ST-5E">5e </A>
Esteban B.
Carrascal M.
Abian J.
Lamparter T.
Biochemistry
2005,
44:
450
<A NAME="RA39105ST-5F">5f </A>
Mroginski MA.
Murgida DH.
von Stetten D.
Kneip C.
Mark F.
Hildebrandt P.
J. Am. Chem. Soc.
2004,
126:
16734
<A NAME="RA39105ST-5G">5g </A>
Kneip C.
Hildebrandt P.
Schlamann W.
Braslavsky SE.
Mark F.
Schaffner K.
Biochemistry
1999,
38:
15185
<A NAME="RA39105ST-5H">5h </A> Recently, Inomata et al. published studies with sterically locked synthetic bilin
derivatives that support the transformation shown in Figure 3 (i.e. 15Z -anti → 15E-anti ):
Inomata K.
Hammam MAS.
Kinoshita H.
Murata Y.
Khawn H.
Noack S.
Michael N.
Lamparter T.
J. Biol. Chem.
2005,
280:
24491
<A NAME="RA39105ST-6">6 </A>
Siegelman HW.
Turner BC.
Hendricks SB.
Plant. Physiol.
1966,
41:
1289
<A NAME="RA39105ST-7">7 </A>
Rüdiger W.
Correll DL.
Justus Liebigs Ann. Chem.
1969,
723:
208
<A NAME="RA39105ST-8">8 </A>
Gossauer A.
Weller J.-P.
Chem. Ber.
1980,
113:
1603
<A NAME="RA39105ST-9">9 </A>
Fry KT.
Mumford FE.
Biochem. Biophys. Res. Commun.
1971,
45:
1466
<A NAME="RA39105ST-10A">10a </A>
Klein G.
Grombein S.
Rüdiger W.
Z. Physiol. Chem.
1977,
358:
1077
<A NAME="RA39105ST-10B">10b </A> See also:
Klein G.
Rüdiger W.
Justus Liebigs Ann. Chem.
1978,
267
<A NAME="RA39105ST-11A">11a </A>
Jacobi PA.
Martinelli M.
Polanc S.
J. Am. Chem. Soc.
1984,
106:
559
See also:
<A NAME="RA39105ST-11B">11b </A>
Jacobi PA.
Brownstein A.
Martinelli M.
Grozinger K.
J. Am. Chem. Soc.
1981,
103:
239
<A NAME="RA39105ST-11C">11c </A>
Martinelli MJ.
Brownstein AD.
Jacobi PA.
Polanc S.
Croat. Chem. Acta
1986,
59:
267
<A NAME="RA39105ST-11D">11d </A>
The Total Synthesis of Saxitoxin , In Strategies and Tactics in Organic Synthesis
Vol. 2:
Lindberg T.
Academic Press, Inc.;
New York:
1989.
<A NAME="RA39105ST-12A">12a </A>
Schreiber SL.
Sammakia T.
Crowe WE.
J. Am. Chem. Soc.
1986,
108:
3128
<A NAME="RA39105ST-12B">12b </A>
Schreiber SL.
Klimas MT.
Sammakia T.
J. Am. Chem. Soc.
1987,
109:
5749 ; first described at the national meeting of the American Chemical Society, April,
1986, in New York City
<A NAME="RA39105ST-13A">13a </A>
Lockwood RF.
Nicholas KM.
Tetrahedron Lett.
1977,
18:
4163
<A NAME="RA39105ST-13B">13b </A>
Nicholas KM.
Nestle MO.
Deyferth D.
Transition Metal Organometallics
Alper H.
Academic Press;
New York:
1978.
<A NAME="RA39105ST-14A">14a </A>
Huisgen R.
Grashey R.
Laur P.
Leitermann H.
Angew. Chem.
1960,
72:
416
<A NAME="RA39105ST-14B">14b </A>
For a summary of the most common methods of azomethine imine generation, see ref.
11d.
<A NAME="RA39105ST-15">15 </A>
Odeh IMA.
PhD Thesis
Wesleyan University;
USA:
1984.
<A NAME="RA39105ST-16">16 </A>
Patterson JM.
Ferry JD.
Boyd MR.
J. Am. Chem. Soc.
1973,
95:
4356
<A NAME="RA39105ST-17">17 </A>
Buddhu SC.
PhD Thesis
Wesleyan University;
USA:
1988.
See, for example:
<A NAME="RA39105ST-18A">18a </A>
Zimmerman H.
Flitsch W.
Kramer V.
Chem. Ber.
1969,
102:
3268
<A NAME="RA39105ST-18B">18b </A>
Kakushima M.
Hamel P.
Frenette R.
Rokach J.
J. Org. Chem.
1983,
48:
3214
<A NAME="RA39105ST-19A">19a </A>
Jacobi PA.
Buddhu S.
Tetrahedron Lett.
1988,
4823
<A NAME="RA39105ST-19B">19b </A>
Jacobi PA.
Cai G.
Tetrahedron Lett.
1991,
32:
1765
<A NAME="RA39105ST-19C">19c </A>
Jacobi PA.
Rajeswari S.
Tetrahedron Lett.
1992,
33:
6231
<A NAME="RA39105ST-19D">19d </A>
Jacobi PA.
Rajeswari S.
Tetrahedron Lett.
1992,
33:
6235
<A NAME="RA39105ST-19E">19e </A>
Jacobi PA.
DeSimone RW.
Tetrahedron Lett.
1992,
33:
6239
<A NAME="RA39105ST-19F">19f </A>
Jacobi PA.
Cai G.
Heterocycles
1993,
35:
1103
<A NAME="RA39105ST-19G">19g </A>
Jacobi PA.
Brielmann HL.
Hauck SI.
Tetrahedron Lett.
1995,
36:
1193
<A NAME="RA39105ST-19H">19h </A>
Jacobi PA.
Guo J.
Zheng W.
Tetrahedron Lett.
1995,
36:
1197
<A NAME="RA39105ST-19I">19i </A>
Jacobi PA.
Guo J.
Tetrahedron Lett.
1995,
36:
2717
<A NAME="RA39105ST-19J">19j </A>
Jacobi PA.
Brielmann HL.
Hauck SI.
J. Org. Chem.
1996,
61:
5013
<A NAME="RA39105ST-19K">19k </A>
Jacobi PA.
Guo J.
Hauck SI.
Leung SH.
Tetrahedron Lett.
1996,
37:
6069
<A NAME="RA39105ST-19L">19l </A>
Jacobi PA.
Buddhu SC.
Fry D.
Rajeswari S.
J. Org. Chem.
1997,
62:
2894
<A NAME="RA39105ST-19M">19m </A>
Jacobi PA.
Guo J.
Rajeswari S.
Zheng W.
J. Org. Chem.
1997,
62:
2907
<A NAME="RA39105ST-19N">19n </A>
Jacobi PA.
Coutts LD.
Guo J.
Hauck SI.
Leung S.
J. Org. Chem.
2000,
65:
205
<A NAME="RA39105ST-19O">19o </A>
Jacobi PA.
DeSimone RW.
Ghosh I.
Guo J.
Leung SH.
Pippin D.
J. Org. Chem.
2000,
65:
8478
<A NAME="RA39105ST-19P">19p </A>
Jacobi PA.
Pippin D.
Org. Lett.
2001,
3:
827
<A NAME="RA39105ST-20A">20a </A>
Hammond GS.
Turro NJ.
Leermakers PA.
J. Phys. Chem.
1962,
66:
1144
<A NAME="RA39105ST-20B">20b </A>
Yang NC.
Hui MH.
Shold DM.
Turro NJ.
Hautala RR.
Dawes K.
Dalton JC.
J. Am. Chem. Soc.
1977,
99:
3023
<A NAME="RA39105ST-21">21 </A>
The structure of dihydropyrromethenone 63b (E -isomer, R = CO2 Me) and alkyne acid 88c were unequivocally established by single crystal X-ray analysis performed by Ms Gayle
Schulte, Yale University.
<A NAME="RA39105ST-22A">22a </A>
Boger DL.
Robarge KD.
J. Org. Chem.
1988,
53:
3373
<A NAME="RA39105ST-22B">22b </A>
Boger DL.
Robarge KD.
J. Org. Chem.
1988,
53:
5793 ; and references cited therein
See also:
<A NAME="RA39105ST-22C">22c </A>
Boger DL.
Corbett WL.
Wiggins JM.
J. Org. Chem.
1990,
55:
2999
<A NAME="RA39105ST-22D">22d </A>
Tietze LF.
Hartfiel U.
Tetrahedron Lett.
1990,
31:
1697 ; and references cited therein
<A NAME="RA39105ST-23">23 </A>
Evans DA.
Britton TC.
Ellman JA.
Tetrahedron Lett.
1987,
28:
6141
<A NAME="RA39105ST-24">24 </A>
Rudisill DE.
Stille JK.
J. Org. Chem.
1989,
54:
5856
<A NAME="RA39105ST-25">25 </A>
As expected, enamides 82 exhibited atropisomerism due to hindered N-N bond rotation, although each isomer
had identical photochemical behavior.
<A NAME="RA39105ST-26A">26a </A>
Pless J.
J. Org. Chem.
1974,
39:
2644
<A NAME="RA39105ST-26B">26b </A>
Clark JH.
Chem. Rev.
1980,
80:
429
<A NAME="RA39105ST-26C">26c </A>
Morrison H.
J. Am. Chem. Soc.
1965,
87:
932
<A NAME="RA39105ST-27A">27a </A>
Sharma RK.
Fry JL.
J. Org. Chem.
1983,
48:
2112
<A NAME="RA39105ST-27B">27b </A>
Clark JH.
Chem. Rev.
1980,
80:
429
<A NAME="RA39105ST-27C">27c </A>
See also ref. 26a.
<A NAME="RA39105ST-28">28 </A>
Volante RP.
Tetrahedron Lett.
1981,
22:
3119 ; and references cited therein
<A NAME="RA39105ST-29">29 </A>
Takai K.
Heathcock CH.
J. Org. Chem.
1985,
50:
3247 ; and references cited therein
<A NAME="RA39105ST-30">30 </A>
Morrison H.
J. Am. Chem. Soc.
1965,
87:
932
<A NAME="RA39105ST-31A">31a </A>
Sonogashira K.
Tohda Y.
Hagihara N.
Tetrahedron Lett.
1975,
16:
4467
For related methodology, see:
<A NAME="RA39105ST-31B">31b </A>
Cassar L.
J. Organomet. Chem.
1975,
93:
253
<A NAME="RA39105ST-31C">31c </A>
Dieck HA.
Heck FR.
J. Organomet. Chem.
1975,
93:
259
<A NAME="RA39105ST-31D">31d </A>
Stephans RD.
Castro CE.
J. Org. Chem.
1963,
28:
3313
<A NAME="RA39105ST-32A">32a </A>
Vasilevskii SF.
Sundukova TA.
Shvartsberg MS.
Kotylarevskii IL.
Bull. Acad. Sci. USSR, Div. Chim. Sci.
1979,
1536 ; Chem. Abstr. 1979 , 91 , 157544g
<A NAME="RA39105ST-32B">32b </A>
Vasilevskii SF.
Sundukova TA.
Shvartsberg MS.
Kotylarevskii IL.
Bull. Acad. Sci. USSR, Div. Chim. Sci.
1980,
1871 ; Chem. Abstr. 1981 , 94 , 30464n
<A NAME="RA39105ST-32C">32c </A>
Alvarez A.
Guzman A.
Ruiz A.
Velarde E.
Muchowski JM.
J. Org. Chem.
1992,
57:
1653
<A NAME="RA39105ST-32D">32d </A> See also:
Chen W.
PhD Thesis
University of Alabama;
Tuscaloosa USA:
1990.
<A NAME="RA39105ST-33">33 </A>
Barton DHR.
Kervagoret J.
Zard SZ.
Tetrahedron
1990,
46:
7587
<A NAME="RA39105ST-34">34 </A> A similar effect has been described by Magnus et al.:
Magnus P.
Carter P.
Elliott J.
Lewis R.
Harling J.
Pitterna T.
Bauta WE.
Fortt S.
J. Am. Chem. Soc.
1992,
114:
2544
<A NAME="RA39105ST-35A">35a </A>
Sharma RK.
Fry JL.
J. Org. Chem.
1983,
48:
2112
<A NAME="RA39105ST-35B">35b </A>
Pless J.
J. Org. Chem.
1974,
39:
2644
<A NAME="RA39105ST-35C">35c </A>
Clark JH.
Chem. Rev.
1980,
80:
429
<A NAME="RA39105ST-36A">36a </A>
Jacobi PA.
Zheng W.
Tetrahedron Lett.
1993,
34:
2581
<A NAME="RA39105ST-36B">36b </A>
Jacobi PA.
Zheng W.
Tetrahedron Lett.
1993,
34:
2585
<A NAME="RA39105ST-37">37 </A> Cleavage of benzyl ethers with P4 S10 does not appear to be a general reaction, but this reagent works well with carboxylic
acids where intramolecular participation is possible. Postulated mechanism:
Jacobi PA.
Herradura P.
Tetrahedron Lett.
1997,
38:
6621
<A NAME="RA39105ST-38A">38a </A>
Rollin P.
Tetrahedron Lett.
1986,
27:
4169
<A NAME="RA39105ST-38B">38b </A>
Rollin P.
Synth. Commun.
1986,
16:
611
<A NAME="RA39105ST-39A">39a </A>
Bishop JE.
Nagy JO.
O’Connell JF.
Rapoport H.
J. Am. Chem. Soc.
1991,
113:
8024
<A NAME="RA39105ST-39B">39b </A>
Bishop JE.
Dagam SA.
Rapoport H.
J. Org. Chem.
1989,
54:
1876
<A NAME="RA39105ST-40">40 </A>
Gossauer A.
Miehe D.
Justus Liebigs Ann. Chem.
1974,
352
<A NAME="RA39105ST-41">41 </A>
Takashi K.
Kinoshita H.
Inomata K.
Synlett
1999,
901
<A NAME="RA39105ST-42A">42a </A>
Dowd P.
Kennedy P.
Synth. Commun.
1981,
11:
935 ; and references cited therein
See also:
<A NAME="RA39105ST-42B">42b </A>
Liotta D.
Santiesteban H.
Tetrahedron Lett.
1977,
18:
4369
<A NAME="RA39105ST-42C">42c </A>
Scarborough RM.
Smith AB.
Tetrahedron Lett.
1977,
18:
4361
<A NAME="RA39105ST-43">43 </A>
We are grateful to Professor Albert Gossauer, of the Université de Fribourg Suisse,
for providing us with NMR and IR spectra for 132 .
<A NAME="RA39105ST-44A">44a </A>
Scheuplein SW.
Harms K.
Brückner R.
Suffert J.
Chem. Ber.
1992,
125:
271
<A NAME="RA39105ST-44B">44b </A> See also:
Nakatani K.
Arai K.
Yamada K.
Terashima S.
Tetrahedron Lett.
1991,
32:
3405
<A NAME="RA39105ST-45A">45a </A>
Corriu RJP.
Perz R.
Tetrahedron Lett.
1985,
26:
1311
<A NAME="RA39105ST-45B">45b </A> The active catalyst in this system is postulated to be a pentacoordinated silicon-ate
complex formed by nucleophilic attack of F- on Si(OMe)4 . See also:
Ahn KH.
Lee SJ.
Tetrahedron Lett.
1994,
35:
1875
<A NAME="RA39105ST-46">46 </A>
Manuscript in preparation: O’Neal, W. G.; Roberts, W. P.; Jacobi, P. A. ‘A Practical
Synthesis of C,D-Unsymmetrical Chlorins’.
<A NAME="RA39105ST-47A">47a </A>
Bishop JE.
O’Connell JF.
Rapoport H.
J. Org. Chem.
1991,
56:
5079
<A NAME="RA39105ST-47B">47b </A>
Johnson AW.
Markham E.
Price R.
Shaw KB.
J. Chem. Soc.
1959,
3416
<A NAME="RA39105ST-47C">47c </A>
Beckmann S.
Wessel T.
Franck B.
Hönle W.
Borrmann H.
von Schnering H.-G.
Angew. Chem., Int. Ed. Engl.
1990,
29:
1393
<A NAME="RA39105ST-47D">47d </A>
Mironov AF.
Ovsepyran TR.
Evstigneeva RP.
Preobrazhenskii NA.
Zh. Obshch. Khim.
1965,
35:
324
<A NAME="RA39105ST-48">48 </A>
We are grateful to Dr. Victor G. Young, X-ray Crystallographic Laboratory, Department
of Chemistry, University of Minnesota, for carrying out the X-ray analysis of 167b .
<A NAME="RA39105ST-49">49 </A>
Ho T.-L.
Tetrahedron
1985,
41:
1
<A NAME="RA39105ST-50A">50a </A>
Jacobi PA.
Liu H.
J. Am. Chem. Soc.
1999,
121:
1958
<A NAME="RA39105ST-50B">50b </A>
Jacobi PA.
Liu H.
J. Org. Chem.
1999,
64:
1778
<A NAME="RA39105ST-50C">50c </A>
Jacobi PA.
Liu H.
Org. Lett.
1999,
1:
341
<A NAME="RA39105ST-51">51 </A>
We are grateful to Dr. Hui Liu of this department for carrying out these experiments.
<A NAME="RA39105ST-52">52 </A>
Sheila graciously made the move to Dartmouth during her last year, and provided invaluable
continuity for the project.
<A NAME="RA39105ST-53A">53a </A>
Elich TD.
Lagarias JC.
J. Biol. Chem.
1989,
264:
12902
<A NAME="RA39105ST-53B">53b </A>
Lagarias JC.
Lagarias DM.
Proc. Natl. Acad. Sci. U.S.A.
1989,
86:
5778
<A NAME="RA39105ST-53C">53c </A>
Deforce L.
Tomizawa K.-I.
Ito N.
Farrens D.
Song P.-S.
Furuya M.
Proc. Natl. Acad. Sci. U.S.A.
1991,
88:
10392
<A NAME="RA39105ST-53D">53d </A>
Li L.
Lagarias JC.
J. Biol. Chem.
1992,
267:
19204
<A NAME="RA39105ST-54A">54a </A>
Arciero DM.
Bryant DA.
Glazer AN.
J. Biol. Chem.
1988,
263:
18343
<A NAME="RA39105ST-54B">54b </A>
Arciero DM.
Dallas JL.
Glazer AN.
J. Biol. Chem.
1988,
263:
18350
<A NAME="RA39105ST-55">55 </A>
Wahleithner JA.
Li L.
Lagarias JC.
Proc. Natl. Acad. Sci. U.S.A.
1991,
88:
10387
For leading references see:
<A NAME="RA39105ST-56A">56a </A>
Takashi K.
Kinoshita H.
Inomata K.
Synlett
1999,
901
<A NAME="RA39105ST-56B">56b </A>
Lindner I.
Knipp B.
Braslavsky SE.
Gärtner W.
Schaffer K.
Angew. Chem. Int. Ed.
1998,
37:
1843
<A NAME="RA39105ST-56C">56c </A>
Jayasundera KP.
Kinoshita H.
Inomata K.
Chem. Lett.
1998,
1227
<A NAME="RA39105ST-57">57 </A>
In addition to Professor Lagarias, I am indebted to his associates who carried out
these experiments, Dr. Nicole Frankenberg and in particular Ms. Lixia Shang. Professor
Lagarias’ research in this area is supported by NIH Grant GM068552, which is gratefully
acknowledged.
<A NAME="RA39105ST-58">58 </A>
Biological Applications of Raman Spectroscopy
Spiro TG.
Wiley-Interscience;
New York:
1987.
<A NAME="RA39105ST-59">59 </A>
Palings I.
Biochemistry
1989,
28:
1498
<A NAME="RA39105ST-60">60 </A>
Personal communication, Professor Richard A. Mathies, University of California, Berkeley,
USA.