Semin Plast Surg 2005; 19(3): 261-270
DOI: 10.1055/s-2005-919721
Copyright © 2005 by Thieme Medical Publishers, Inc., 333 Seventh Avenue, New York, NY 10001, USA.

Challenges in Soft Tissue Engineering

Eser Yuksel1 , 2 , 3 , Joshua Choo4 , Matthew Wettergreen5 , Michael Liebschner5
  • 1Methodist Hospital, Houston, Texas
  • 2St. Luke's Episcopal Hospital, Houston, Texas
  • 3Texas Children's Hospital, Houston, Texas
  • 4Baylor College of Medicine, Houston, Texas
  • 5Rice University, Department of Bioengineering, Houston, Texas
Further Information

Publication History

Publication Date:
11 October 2005 (online)

ABSTRACT

Soft tissue engineering strategies targeting restoration of volume loss have inherent critical challenges as they relate to the problem of restoration of defects with a high volume to surface ratio. We outline the problems associated with the limitations of translational applications regarding soft tissue engineering strategies as follows: cell survival, mechanical challenges: macroenvironment (scaffold collapse and on-the-shelf availability), compositional considerations: microenvironment, inducing malignant behavior, cell migration, and cell exhaustion. These are discussed with our alternative suggestions for solutions.

REFERENCES

  • 1 Skalak R, Fox C F. Tissue engineering: proceedings of a workshop, held at Granlibakken, Lake Tahoe, California, February 26-29, 1988. UCLA Symposia on Molecular and Cellular Biology. New series, vol 107. New York; Liss 1988: xxi, 343
  • 2 Langer R, Vacanti J P. Tissue engineering.  Science. 1993;  260 920-926
  • 3 Yao C, Prevel P, Koch S et al.. Modification of collagen matrices for enhancing angiogenesis.  Cells Tissues Organs. 2004;  178 189-196
  • 4 Zwaginga J J, Doevendans P. Stem cell-derived angiogenic/vasculogenic cells: possible therapies for tissue repair and tissue engineering.  Clin Exp Pharmacol Physiol. 2003;  30 900-908
  • 5 Elcin Y M, Dixit V, Gitnick G. Extensive in vivo angiogenesis following controlled release of human vascular endothelial cell growth factor: implications for tissue engineering and wound healing.  Artif Organs. 2001;  25 558-565
  • 6 Wettergreen M A, Bucklen B S, Starly B, Yuksel E, Sun W, Liebschner M A. Creation of a unit block library of architectures for use in assembled scaffold engineering.  Computer Aided Design. 2005;  37 1141-1149
  • 7 Ishaug-Riley S L, Crane G M, Gurlek A et al.. Ectopic bone formation by marrow stromal osteoblast transplantation using poly(DL-lactic-co-glycolic acid) foams implanted into the rat mesentery.  J Biomed Mater Res. 1997;  36 1-8
  • 8 Wettergreen M A, Bucklen B S, Sun W, Liebschner M A. Computer-aided tissue engineering of a human vertebral body.  Annals of Biomedical Engineering. 2005;  33 1394-1404
  • 9 Wettergreen M A, Timmer M D, Lemoine J J, Mikos A G, Liebschner M A. Design of a three-dimensional composite scaffold with varied engineered micro-architecture. 13th Interdisciplinary Research Conference on Biomaterials March 2003 Baltimore, MD;
  • 10 Luo Y, Shoichet M S. A photolabile hydrogel for guided three-dimensional cell growth and migration.  Nat Mater. 2004;  3 249-253
  • 11 Kapur T A, Shoichet M S. Immobilized concentration gradients of nerve growth factor guide neurite outgrowth.  J Biomed Mater Res A. 2004;  68 235-243
  • 12 Hubbell J A. Biomaterials in tissue engineering.  Biotechnology (N Y). 1995;  13 565-576
  • 13 Yuksel E, Weinfeld A B, Cleek R et al.. De novo adipose tissue generation through long-term, local delivery of insulin and insulin-like growth factor-1 by PLGA/PEG microspheres in an in vivo rat model: a novel concept and capability.  Plast Reconstr Surg. 2000;  105 1721-1729
  • 14 Ishaug-Riley S L, Crane G M, Gurlek A et al.. Ectopic bone formation by marrow stromal osteoblast transplantation using poly(DL-lactic-co-glycolic acid) foams implanted into the rat mesentery.  J Biomed Mater Res. 1997;  36 1-8
  • 15 Yuksel E, Weinfeld A B, Cleek R et al.. Augmentation of adipofascial flaps using the long-term local delivery of insulin and insulin-like growth factor-1.  Plast Reconstr Surg. 2000;  106 373-382
  • 16 Yuksel E, Weinfeld A B, Cleek R et al.. Increased free fat-graft survival with the long-term, local delivery of insulin, insulin-like growth factor-I, and basic fibroblast growth factor by PLGA/PEG microspheres.  Plast Reconstr Surg. 2000;  105 1712-1720
  • 17 Roberts-Thomson S J. Peroxisome proliferator-activated receptors in tumorigenesis: targets of tumour promotion and treatment.  Immunol Cell Biol. 2000;  78 436-441

Eser YukselM.D. 

1709 Dryden, Suite 2260, Baylor College of Medicine, Department of Surgery

Division of Plastic Surgery, Houston, TX 77030

    >